ترغب بنشر مسار تعليمي؟ اضغط هنا

Robust Reinforcement Learning using Adversarial Populations

104   0   0.0 ( 0 )
 نشر من قبل Eugene Vinitsky
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Reinforcement Learning (RL) is an effective tool for controller design but can struggle with issues of robustness, failing catastrophically when the underlying system dynamics are perturbed. The Robust RL formulation tackles this by adding worst-case adversarial noise to the dynamics and constructing the noise distribution as the solution to a zero-sum minimax game. However, existing work on learning solutions to the Robust RL formulation has primarily focused on training a single RL agent against a single adversary. In this work, we demonstrate that using a single adversary does not consistently yield robustness to dynamics variations under standard parametrizations of the adversary; the resulting policy is highly exploitable by new adversaries. We propose a population-based augmentation to the Robust RL formulation in which we randomly initialize a population of adversaries and sample from the population uniformly during training. We empirically validate across robotics benchmarks that the use of an adversarial population results in a more robust policy that also improves out-of-distribution generalization. Finally, we demonstrate that this approach provides comparable robustness and generalization as domain randomization on these benchmarks while avoiding a ubiquitous domain randomization failure mode.

قيم البحث

اقرأ أيضاً

This paper proposes adversarial attacks for Reinforcement Learning (RL) and then improves the robustness of Deep Reinforcement Learning algorithms (DRL) to parameter uncertainties with the help of these attacks. We show that even a naively engineered attack successfully degrades the performance of DRL algorithm. We further improve the attack using gradient information of an engineered loss function which leads to further degradation in performance. These attacks are then leveraged during training to improve the robustness of RL within robust control framework. We show that this adversarial training of DRL algorithms like Deep Double Q learning and Deep Deterministic Policy Gradients leads to significant increase in robustness to parameter variations for RL benchmarks such as Cart-pole, Mountain Car, Hopper and Half Cheetah environment.
Deep neural networks, including reinforcement learning agents, have been proven vulnerable to small adversarial changes in the input, thus making deploying such networks in the real world problematic. In this paper, we propose RADIAL-RL, a method to train reinforcement learning agents with improved robustness against any $l_p$-bounded adversarial attack. By simply minimizing an upper bound of the loss functions under worst case adversarial perturbation derived from efficient robustness verification methods, we significantly improve robustness of RL-agents trained on Atari-2600 games and show that RADIAL-RL can beat state-of-the-art robust training algorithms when evaluated against PGD-attacks. We also propose a new evaluation method, Greedy Worst-Case Reward (GWC), for measuring attack agnostic robustness of RL agents. GWC can be evaluated efficiently and it serves as a good estimate of the reward under the worst possible sequence of adversarial attacks; in particular, GWC accounts for the importance of each action and their temporal dependency, improving upon previous approaches that only evaluate whether each single action can change under input perturbations. Our code is available at https://github.com/tuomaso/radial_rl.
This paper considers policy search in continuous state-action reinforcement learning problems. Typically, one computes search directions using a classic expression for the policy gradient called the Policy Gradient Theorem, which decomposes the gradi ent of the value function into two factors: the score function and the Q-function. This paper presents four results:(i) an alternative policy gradient theorem using weak (measure-valued) derivatives instead of score-function is established; (ii) the stochastic gradient estimates thus derived are shown to be unbiased and to yield algorithms that converge almost surely to stationary points of the non-convex value function of the reinforcement learning problem; (iii) the sample complexity of the algorithm is derived and is shown to be $O(1/sqrt(k))$; (iv) finally, the expected variance of the gradient estimates obtained using weak derivatives is shown to be lower than those obtained using the popular score-function approach. Experiments on OpenAI gym pendulum environment show superior performance of the proposed algorithm.
We introduce a sampling perspective to tackle the challenging task of training robust Reinforcement Learning (RL) agents. Leveraging the powerful Stochastic Gradient Langevin Dynamics, we present a novel, scalable two-player RL algorithm, which is a sampling variant of the two-player policy gradient method. Our algorithm consistently outperforms existing baselines, in terms of generalization across different training and testing conditions, on several MuJoCo environments. Our experiments also show that, even for objective functions that entirely ignore potential environmental shifts, our sampling approach remains highly robust in comparison to standard RL algorithms.
Reward function specification, which requires considerable human effort and iteration, remains a major impediment for learning behaviors through deep reinforcement learning. In contrast, providing visual demonstrations of desired behaviors often pres ents an easier and more natural way to teach agents. We consider a setting where an agent is provided a fixed dataset of visual demonstrations illustrating how to perform a task, and must learn to solve the task using the provided demonstrations and unsupervised environment interactions. This setting presents a number of challenges including representation learning for visual observations, sample complexity due to high dimensional spaces, and learning instability due to the lack of a fixed reward or learning signal. Towards addressing these challenges, we develop a variational model-based adversarial imitation learning (V-MAIL) algorithm. The model-based approach provides a strong signal for representation learning, enables sample efficiency, and improves the stability of adversarial training by enabling on-policy learning. Through experiments involving several vision-based locomotion and manipulation tasks, we find that V-MAIL learns successful visuomotor policies in a sample-efficient manner, has better stability compared to prior work, and also achieves higher asymptotic performance. We further find that by transferring the learned models, V-MAIL can learn new tasks from visual demonstrations without any additional environment interactions. All results including videos can be found online at url{https://sites.google.com/view/variational-mail}.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا