ترغب بنشر مسار تعليمي؟ اضغط هنا

Robust Deep Reinforcement Learning through Adversarial Loss

162   0   0.0 ( 0 )
 نشر من قبل Tuomas Oikarinen
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Deep neural networks, including reinforcement learning agents, have been proven vulnerable to small adversarial changes in the input, thus making deploying such networks in the real world problematic. In this paper, we propose RADIAL-RL, a method to train reinforcement learning agents with improved robustness against any $l_p$-bounded adversarial attack. By simply minimizing an upper bound of the loss functions under worst case adversarial perturbation derived from efficient robustness verification methods, we significantly improve robustness of RL-agents trained on Atari-2600 games and show that RADIAL-RL can beat state-of-the-art robust training algorithms when evaluated against PGD-attacks. We also propose a new evaluation method, Greedy Worst-Case Reward (GWC), for measuring attack agnostic robustness of RL agents. GWC can be evaluated efficiently and it serves as a good estimate of the reward under the worst possible sequence of adversarial attacks; in particular, GWC accounts for the importance of each action and their temporal dependency, improving upon previous approaches that only evaluate whether each single action can change under input perturbations. Our code is available at https://github.com/tuomaso/radial_rl.

قيم البحث

اقرأ أيضاً

This paper proposes adversarial attacks for Reinforcement Learning (RL) and then improves the robustness of Deep Reinforcement Learning algorithms (DRL) to parameter uncertainties with the help of these attacks. We show that even a naively engineered attack successfully degrades the performance of DRL algorithm. We further improve the attack using gradient information of an engineered loss function which leads to further degradation in performance. These attacks are then leveraged during training to improve the robustness of RL within robust control framework. We show that this adversarial training of DRL algorithms like Deep Double Q learning and Deep Deterministic Policy Gradients leads to significant increase in robustness to parameter variations for RL benchmarks such as Cart-pole, Mountain Car, Hopper and Half Cheetah environment.
Although deep neural networks have shown promising performances on various tasks, they are susceptible to incorrect predictions induced by imperceptibly small perturbations in inputs. A large number of previous works proposed to detect adversarial at tacks. Yet, most of them cannot effectively detect them against adaptive whitebox attacks where an adversary has the knowledge of the model and the defense method. In this paper, we propose a new probabilistic adversarial detector motivated by a recently introduced non-robust feature. We consider the non-robust features as a common property of adversarial examples, and we deduce it is possible to find a cluster in representation space corresponding to the property. This idea leads us to probability estimate distribution of adversarial representations in a separate cluster, and leverage the distribution for a likelihood based adversarial detector.
Recent work has discovered that deep reinforcement learning (DRL) policies are vulnerable to adversarial examples. These attacks mislead the policy of DRL agents by perturbing the state of the environment observed by agents. They are feasible in prin ciple but too slow to fool DRL policies in real time. We propose a new attack to fool DRL policies that is both effective and efficient enough to be mounted in real time. We utilize the Universal Adversarial Perturbation (UAP) method to compute effective perturbations independent of the individual inputs to which they are applied. Via an extensive evaluation using Atari 2600 games, we show that our technique is effective, as it fully degrades the performance of both deterministic and stochastic policies (up to 100%, even when the $l_infty$ bound on the perturbation is as small as 0.005). We also show that our attack is efficient, incurring an online computational cost of 0.027ms on average. It is faster compared to the response time (0.6ms on average) of agents with different DRL policies, and considerably faster than prior attacks (2.7ms on average). Furthermore, we demonstrate that known defenses are ineffective against universal perturbations. We propose an effective detection technique which can form the basis for robust defenses against attacks based on universal perturbations.
Deep learning-based time series models are being extensively utilized in engineering and manufacturing industries for process control and optimization, asset monitoring, diagnostic and predictive maintenance. These models have shown great improvement in the prediction of the remaining useful life (RUL) of industrial equipment but suffer from inherent vulnerability to adversarial attacks. These attacks can be easily exploited and can lead to catastrophic failure of critical industrial equipment. In general, different adversarial perturbations are computed for each instance of the input data. This is, however, difficult for the attacker to achieve in real time due to higher computational requirement and lack of uninterrupted access to the input data. Hence, we present the concept of universal adversarial perturbation, a special imperceptible noise to fool regression based RUL prediction models. Attackers can easily utilize universal adversarial perturbations for real-time attack since continuous access to input data and repetitive computation of adversarial perturbations are not a prerequisite for the same. We evaluate the effect of universal adversarial attacks using NASA turbofan engine dataset. We show that addition of universal adversarial perturbation to any instance of the input data increases error in the output predicted by the model. To the best of our knowledge, we are the first to study the effect of the universal adversarial perturbation on time series regression models. We further demonstrate the effect of varying the strength of perturbations on RUL prediction models and found that model accuracy decreases with the increase in perturbation strength of the universal adversarial attack. We also showcase that universal adversarial perturbation can be transferred across different models.
Reinforcement Learning (RL) is an effective tool for controller design but can struggle with issues of robustness, failing catastrophically when the underlying system dynamics are perturbed. The Robust RL formulation tackles this by adding worst-case adversarial noise to the dynamics and constructing the noise distribution as the solution to a zero-sum minimax game. However, existing work on learning solutions to the Robust RL formulation has primarily focused on training a single RL agent against a single adversary. In this work, we demonstrate that using a single adversary does not consistently yield robustness to dynamics variations under standard parametrizations of the adversary; the resulting policy is highly exploitable by new adversaries. We propose a population-based augmentation to the Robust RL formulation in which we randomly initialize a population of adversaries and sample from the population uniformly during training. We empirically validate across robotics benchmarks that the use of an adversarial population results in a more robust policy that also improves out-of-distribution generalization. Finally, we demonstrate that this approach provides comparable robustness and generalization as domain randomization on these benchmarks while avoiding a ubiquitous domain randomization failure mode.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا