ترغب بنشر مسار تعليمي؟ اضغط هنا

The Habitability of the Galactic Bulge

57   0   0.0 ( 0 )
 نشر من قبل Amedeo Balbi
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a new investigation of the habitability of the Milky Way bulge, that expands previous studies on the Galactic Habitable Zone. We discuss existing knowledge on the abundance of planets in the bulge, metallicity and the possible frequency of rocky planets, orbital stability and encounters, and the possibility of planets around the central supermassive black hole. We focus on two aspects that can present substantial differences with respect to the environment in the disk: (i) the ionizing radiation environment, due to the presence of the central black hole and to the highest rate of supernovae explosions and (ii) the efficiency of putative lithopanspermia mechanism for the diffusion of life between stellar systems. We use analytical models of the star density in the bulge to provide estimates of the rate of catastrophic events and of the diffusion timescales for life over interstellar distances.

قيم البحث

اقرأ أيضاً

78 - E. Pacetti , A. Balbi , M. Lingam 2020
Tidal Disruption Events (TDEs) are characterized by the emission of a short burst of high-energy radiation. We analyze the cumulative impact of TDEs on galactic habitability using the Milky Way as a proxy. We show that X-rays and extreme ultraviolet (XUV) radiation emitted during TDEs can cause hydrodynamic escape and instigate biological damage. By taking the appropriate variables into consideration, such as the efficiency of atmospheric escape and distance from the Galactic center, we demonstrate that the impact of TDEs on galactic habitability is comparable to that of Active Galactic Nuclei. In particular, we show that planets within distances of $sim 0.1$-$1$ kpc could lose Earth-like atmospheres over the age of the Earth, and that some of them might be subject to biological damage once every $gtrsim 10^4$ yrs. We conclude by highlighting potential ramifications of TDEs and argue that they should be factored into future analyses of inner galactic habitability.
We report the analysis of the microlensing event OGLE-2018-BLG-0677. A small feature in the light curve of the event leads to the discovery that the lens is a star-planet system. Although there are two degenerate solutions that could not be distingui shed for this event, both lead to a similar planet-host mass ratio. We perform a Bayesian analysis based on a Galactic model to obtain the properties of the system and find that the planet corresponds to a super-Earth/sub-Neptune with a mass $M_{mathrm{planet}} = {3.96}^{+5.88}_{-2.66}mathrm{M_oplus}$. The host star has a mass $ M_{mathrm{host}} = {0.12}^{+0.14}_{-0.08}mathrm{M_odot}$. The projected separation for the inner and outer solutions are ${0.63}^{+0.20}_{-0.17}$~AU and ${0.72}^{+0.23}_{-0.19}$~AU respectively. At $Deltachi^2=chi^2({rm 1L1S})-chi^2({rm 2L1S})=46$, this is by far the lowest $Deltachi^2$ for any securely-detected microlensing planet to date, a feature that is closely connected to the fact that it is detected primarily via a dip rather than a bump.
111 - G. Bono , M. DallOra , M. Fabrizio 2018
The main aim of this experiment is to provide a complete census of old (t > 10 Gyr, RR Lyrae, type II Cepheids, red horizontal branch), intermediate age (red clump, Miras) and young (classical Cepheids) stellar tracers across the Galactic Bulge. To f ully exploit the unique photometric quality of LSST images, we plan to perform a Shallow minisurvey (ugrizy, -20 < l < 20 deg, -15 < b < 10 deg) and a Deep minisurvey (izy, -20 < l < 20 deg, -3 < b < 3 deg). The former one is aimed at constraining the 3D structure of the galactic Bulge across the four quadrants, and in particular, the transition between inner and outer Bulge. The u,g,r,i,z,y LSST bands provide fundamental diagnostics to constrain the evolutionary properties of low and intermediate-mass stars when moving from a metal-poor to a metal-rich regime. The deep minisurvey is aimed at tracing RR Lyrae, Red Clump stars, Miras and classical Cepheids in highly reddened regions of the Galactic center. These images will allow us to investigate the role that baryonic mass and dark matter played in the early formation and evolution of the MW.
114 - Julia Janczak 2009
We report the detection of sub-Saturn-mass planet MOA-2008-BLG-310Lb and argue that it is the strongest candidate yet for a bulge planet. Deviations from the single-lens fit are smoothed out by finite-source effects and so are not immediately apparen t from the light curve. Nevertheless, we find that a model in which the primary has a planetary companion is favored over the single-lens model by Deltachi^2 ~ 880 for an additional three degrees of freedom. Detailed analysis yields a planet/star mass ratio q=(3.3+/-0.3)x10^{-4} and an angular separation between the planet and star within 10% of the angular Einstein radius. The small angular Einstein radius, theta_E=0.155+/-0.011 mas, constrains the distance to the lens to be D_L>6.0 kpc if it is a star (M_L>0.08 M_sun). This is the only microlensing exoplanet host discovered so far that must be in the bulge if it is a star. By analyzing VLT NACO adaptive optics images taken near the baseline of the event, we detect additional blended light that is aligned to within 130 mas of the lensed source. This light is plausibly from the lens, but could also be due to a companion to lens or source, or possibly an unassociated star. If the blended light is indeed due to the lens, we can estimate the mass of the lens, M_L=0.67+/-0.14 M_sun, planet mass m=74+/-17 M_Earth, and projected separation between the planet and host, 1.25+/-0.10 AU, putting it right on the snow line. If not, then the planet has lower mass, is closer to its host and is colder. To distinguish among these possibilities on reasonable timescales would require obtaining Hubble Space Telescope images almost immediately, before the source-lens relative motion of mu=5 mas yr^{-1} causes them to separate substantially.
We report periods and JHKL observations for 648 oxygen-rich Mira variables found in two outer bulge fields at b=-7 degrees and l=+/-8 degrees and combine these with data on 8057 inner bulge Miras from the OGLE, Macho and 2MASS surveys, which are conc entrated closer to the Galactic centre. Distance moduli are estimated for all these stars. Evidence is given showing that the bulge structure is a function of age. The longer period Miras (log P > 2.6, age about 5 Gyr and younger) show clear evidence of a bar structure inclined to the line of sight in both the inner and outer regions. The distribution of the shorter period (metal-rich globular cluster age) Miras, appears spheroidal in the outer bulge. In the inner region these old stars are also distributed differently from the younger ones and possibly suggest a more complex structure. These data suggest a distance to the Galactic centre, R0, of 8.9 kpc with an estimated uncertainty of 0.4 kpc. The possible effect of helium enrichment on our conclusions is discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا