ترغب بنشر مسار تعليمي؟ اضغط هنا

Ogle-2018-blg-0677lb: A super earth near the galactic bulge

84   0   0.0 ( 0 )
 نشر من قبل Antonio Herrera-Mart\\'in
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the analysis of the microlensing event OGLE-2018-BLG-0677. A small feature in the light curve of the event leads to the discovery that the lens is a star-planet system. Although there are two degenerate solutions that could not be distinguished for this event, both lead to a similar planet-host mass ratio. We perform a Bayesian analysis based on a Galactic model to obtain the properties of the system and find that the planet corresponds to a super-Earth/sub-Neptune with a mass $M_{mathrm{planet}} = {3.96}^{+5.88}_{-2.66}mathrm{M_oplus}$. The host star has a mass $ M_{mathrm{host}} = {0.12}^{+0.14}_{-0.08}mathrm{M_odot}$. The projected separation for the inner and outer solutions are ${0.63}^{+0.20}_{-0.17}$~AU and ${0.72}^{+0.23}_{-0.19}$~AU respectively. At $Deltachi^2=chi^2({rm 1L1S})-chi^2({rm 2L1S})=46$, this is by far the lowest $Deltachi^2$ for any securely-detected microlensing planet to date, a feature that is closely connected to the fact that it is detected primarily via a dip rather than a bump.



قيم البحث

اقرأ أيضاً

We aim to find missing microlensing planets hidden in the unanalyzed lensing events of previous survey data. For this purpose, we conduct a systematic inspection of high-magnification microlensing events, with peak magnifications $A_{rm peak}gtrsim 3 0$, in the data collected from high-cadence surveys in and before the 2018 season. From this investigation, we identify an anomaly in the lensing light curve of the event KMT-2018-BLG-1025. The analysis of the light curve indicates that the anomaly is caused by a very low mass-ratio companion to the lens. We identify three degenerate solutions, in which the ambiguity between a pair of solutions (solutions B) is caused by the previously known close--wide degeneracy, and the degeneracy between these and the other solution (solution A) is a new type that has not been reported before. The estimated mass ratio between the planet and host is $qsim 0.8times 10^{-4}$ for the solution A and $qsim 1.6times 10^{-4}$ for the solutions B. From the Bayesian analysis conducted with measured observables, we estimate that the masses of the planet and host and the distance to the lens are $(M_{rm p}, M_{rm h}, D_{rm L})sim (6.1~M_oplus, 0.22~M_odot, 6.7~{rm kpc})$ for the solution A and $sim (4.4~M_oplus, 0.08~M_odot, 7.5~{rm kpc})$ for the solutions B. The planet mass is in the category of a super-Earth regardless of the solutions, making the planet the eleventh super-Earth planet, with masses lying between those of Earth and the Solar systems ice giants, discovered by microlensing.
We present the analyses of two microlensing events, OGLE-2018-BLG-0567 and OGLE-2018-BLG-0962. In both events, the short-lasting anomalies were densely and continuously covered by two high-cadence surveys. The light-curve modeling indicates that the anomalies are generated by source crossings over the planetary caustics induced by planetary companions to the hosts. The estimated planet/host separation (scaled to the angular Einstein radius $theta_{rm E}$) and mass ratio are $(s, q) = (1.81, 1.24times10^{-3})$ and $(s, q) = (1.25, 2.38times10^{-3})$, respectively. From Bayesian analyses, we estimate the host and planet masses as $(M_{rm h}, M_{rm p}) = (0.24_{-0.13}^{+0.16},M_{odot}, 0.32_{-0.16}^{+0.34},M_{rm J})$ and $(M_{rm h}, M_{rm p}) = (0.55_{-0.29}^{+0.32},M_{odot}, 1.37_{-0.72}^{+0.80},M_{rm J})$, respectively. These planetary systems are located at a distance of $7.07_{-1.15}^{+0.93},{rm kpc}$ for OGLE-2018-BLG-0567 and $6.47_{-1.73}^{+1.04},{rm kpc}$ for OGLE-2018-BLG-0962, suggesting that they are likely to be near the Galactic bulge. The two events prove the capability of current high-cadence surveys for finding planets through the planetary-caustic channel. We find that most published planetary-caustic planets are found in Hollywood events in which the source size strongly contributes to the anomaly cross section relative to the size of the caustic.
We report the discovery of a super-Earth mass planet in the microlensing event MOA-2012-BLG-505. This event has the second shortest event timescale of $t_{rm E}=10 pm 1$ days where the observed data show evidence of planetary companion. Our 15 minute high cadence survey observation schedule revealed the short subtle planetary signature. The system shows the well known close/wide degeneracy. The planet/host-star mass ratio is $q =2.1 times 10^{-4}$ and the projected separation normalized by the Einstein radius is s = 1.1 or 0.9 for the wide and close solutions, respectively. We estimate the physical parameters of the system by using a Bayesian analysis and find that the lens consists of a super-Earth with a mass of $6.7^{+10.7}_{-3.6}M_{oplus}$ orbiting around a brown-dwarf or late M-dwarf host with a mass of $0.10^{+0.16}_{-0.05}M_{odot}$ with a projected star-planet separation of $0.9^{+0.3}_{-0.2}$AU. The system is at a distance of $7.2 pm 1.1$ kpc, i.e., it is likely to be in the Galactic bulge. The small angular Einstein radius ($theta_{rm E}=0.12 pm 0.02$ mas) and short event timescale are typical for a low-mass lens in the Galactic bulge. Such low-mass planetary systems in the Bulge are rare because the detection efficiency of planets in short microlensing events is relatively low. This discovery may suggest that such low mass planetary systems are abundant in the Bulge and currently on-going high cadence survey programs will detect more such events and may reveal an abundance of such planetary systems.
We report the analysis of OGLE-2019-BLG-0960, which contains the smallest mass-ratio microlensing planet found to date (q = 1.2--1.6 x 10^{-5} at 1-sigma). Although there is substantial uncertainty in the satellite parallax measured by Spitzer, the m easurement of the annual parallax effect combined with the finite source effect allows us to determine the mass of the host star (M_L = 0.3--0.6 M_Sun), the mass of its planet (m_p = 1.4--3.1 M_Earth), the projected separation between the host and planet (a_perp = 1.2--2.3 au), and the distance to the lens system (D_L = 0.6--1.2 kpc). The lens is plausibly the blend, which could be checked with adaptive optics observations. As the smallest planet clearly below the break in the mass-ratio function (Suzuki et al. 2016; Jung et al. 2019), it demonstrates that current experiments are powerful enough to robustly measure the slope of the mass-ratio function below that break. We find that the cross-section for detecting small planets is maximized for planets with separations just outside of the boundary for resonant caustics and that sensitivity to such planets can be maximized by intensively monitoring events whenever they are magnified by a factor A > 5. Finally, an empirical investigation demonstrates that most planets showing a degeneracy between (s > 1) and (s < 1) solutions are not in the regime (|log s| >> 0) for which the close/wide degeneracy was derived. This investigation suggests a link between the close/wide and inner/outer degeneracies and also that the symmetry in the lens equation goes much deeper than symmetries uncovered for the limiting cases.
We report the discovery and the analysis of the short (tE < 5 days) planetary microlensing event, OGLE-2015-BLG-1771. The event was discovered by the Optical Gravitational Lensing Experiment (OGLE), and the planetary anomaly (at I ~ 19) was captured by The Korea Microlensing Telescope Network (KMTNet). The event has three surviving planetary models that explain the observed light curves, with planet-host mass ratio q ~ 5.4 * 10^{-3}, 4.5 * 10^{-3} and 4.5 * 10^{-2}, respectively. The first model is the best-fit model, while the second model is disfavored by Deltachi^2 ~ 3. The last model is strongly disfavored by Deltachi^2 ~ 15 but not ruled out. A Bayesian analysis using a Galactic model indicates that the first two models are probably composed of a Saturn-mass planet orbiting a late M dwarf, while the third one could consist of a super-Jovian planet and a mid-mass brown dwarf. The source-lens relative proper motion is mu_rel ~ 9 mas/yr, so the source and lens could be resolved by current adaptive-optics (AO) instruments in 2021 if the lens is luminous.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا