ترغب بنشر مسار تعليمي؟ اضغط هنا

unVEil the darknesS of The gAlactic buLgE (VESTALE)

112   0   0.0 ( 0 )
 نشر من قبل Massimo Dall'Ora
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The main aim of this experiment is to provide a complete census of old (t > 10 Gyr, RR Lyrae, type II Cepheids, red horizontal branch), intermediate age (red clump, Miras) and young (classical Cepheids) stellar tracers across the Galactic Bulge. To fully exploit the unique photometric quality of LSST images, we plan to perform a Shallow minisurvey (ugrizy, -20 < l < 20 deg, -15 < b < 10 deg) and a Deep minisurvey (izy, -20 < l < 20 deg, -3 < b < 3 deg). The former one is aimed at constraining the 3D structure of the galactic Bulge across the four quadrants, and in particular, the transition between inner and outer Bulge. The u,g,r,i,z,y LSST bands provide fundamental diagnostics to constrain the evolutionary properties of low and intermediate-mass stars when moving from a metal-poor to a metal-rich regime. The deep minisurvey is aimed at tracing RR Lyrae, Red Clump stars, Miras and classical Cepheids in highly reddened regions of the Galactic center. These images will allow us to investigate the role that baryonic mass and dark matter played in the early formation and evolution of the MW.



قيم البحث

اقرأ أيضاً

We present a new investigation of the habitability of the Milky Way bulge, that expands previous studies on the Galactic Habitable Zone. We discuss existing knowledge on the abundance of planets in the bulge, metallicity and the possible frequency of rocky planets, orbital stability and encounters, and the possibility of planets around the central supermassive black hole. We focus on two aspects that can present substantial differences with respect to the environment in the disk: (i) the ionizing radiation environment, due to the presence of the central black hole and to the highest rate of supernovae explosions and (ii) the efficiency of putative lithopanspermia mechanism for the diffusion of life between stellar systems. We use analytical models of the star density in the bulge to provide estimates of the rate of catastrophic events and of the diffusion timescales for life over interstellar distances.
We report periods and JHKL observations for 648 oxygen-rich Mira variables found in two outer bulge fields at b=-7 degrees and l=+/-8 degrees and combine these with data on 8057 inner bulge Miras from the OGLE, Macho and 2MASS surveys, which are conc entrated closer to the Galactic centre. Distance moduli are estimated for all these stars. Evidence is given showing that the bulge structure is a function of age. The longer period Miras (log P > 2.6, age about 5 Gyr and younger) show clear evidence of a bar structure inclined to the line of sight in both the inner and outer regions. The distribution of the shorter period (metal-rich globular cluster age) Miras, appears spheroidal in the outer bulge. In the inner region these old stars are also distributed differently from the younger ones and possibly suggest a more complex structure. These data suggest a distance to the Galactic centre, R0, of 8.9 kpc with an estimated uncertainty of 0.4 kpc. The possible effect of helium enrichment on our conclusions is discussed.
We report the first estimate of the He abundance of the population of RR Lyrae stars in the Galactic bulge. This is done by comparing the recent observational data with the latest models. We use the large samples of ab type RR Lyrae stars found by OG LE IV in the inner bulge and by the VVV survey in the outer bulge. We present the result from the new models computed by Marconi et al. (2017), showing that the minimum Period for fundamental RR Lyrae pulsators depends on the He content. By comparing these models with the observations in a Period versus effective temperature plane, we find that the bulk of the bulge ab type RR Lyrae are consistent with primordial He abundance Y=0.245, ruling out a significant He-enriched population. This work demonstrates that the He content of the bulge RR Lyrae is different from that of the bulk of the bulge population as traced by the red clump giants, that appear to be significantly more He-rich.
80 - X. D. Xu , J. R. Shi , H. L Yan 2019
Based on the medium-high resolution (R~ 20,000), modest signal-to-noise ratio (S/N > 70) FLAMES-GIRAFFE spectra, we investigated the copper abundances of 129 red giant branch stars in the Galactic bulge with [Fe/H] from -1.14 to 0.46 dex. The copper abundances are derived from both local thermodynamic equilibrium (LTE) and nonlocal thermodynamic equilibrium (NLTE) with the spectral synthesis method. We find that the NLTE effects for Cu I lines show a clear dependence on metallicity, and they gradually increase with decreasing [Fe/H] for our sample stars. Our results indicate that the NLTE effects of copper are important not only for metal-poor stars but also for supersolar metal-rich ones and the LTE results underestimate the Cu abundances. We note that the [Cu/Fe] trend of the bulge stars is similar to that of the Galactic disk stars spanning the metallicity range of -1.14 < [Fe/H] < 0.0 dex and the [Cu/Fe] ratios increase with increasing metallicity when [Fe/H] is from~-1.2 to~-0.5 dex, favoring a secondary (metallicity-dependent) production of Cu.
We obtained high-resolution near-IR spectra of 45 AGB stars located in the Galactic bulge. The aim of the project is to determine key elemental abundances in these stars to help constrain the formation history of the bulge. A further aim is to link t he photospheric abundances to the dust species found in the winds of the stars. Here we present a progress report of the analysis of the spectra.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا