ﻻ يوجد ملخص باللغة العربية
Boron carbide (B$_4$C) is of both fundamental scientific and practical interest in inertial confinement fusion (ICF) and high energy density physics experiments. We report the results of a comprehensive computational study of the equation of state (EOS) of B$_4$C in the liquid, warm dense matter, and plasma phases. Our calculations are cross-validated by comparisons with Hugoniot measurements up to 61 megabar from planar shock experiments performed at the National Ignition Facility (NIF). Our computational methods include path integral Monte Carlo, activity expansion, as well as all-electron Greens function Korringa-Kohn-Rostoker and molecular dynamics that are both based on density functional theory. We calculate the pressure-internal energy EOS of B$_4$C over a broad range of temperatures ($sim$6$times$10$^3$--5$times$10$^8$ K) and densities (0.025--50 g/cm$^{3}$). We assess that the largest discrepancies between theoretical predictions are $lesssim$5% near the compression maximum at 1--2$times10^6$ K. This is the warm-dense state in which the K shell significantly ionizes and has posed grand challenges to theory and experiment. By comparing with different EOS models, we find a Purgatorio model (LEOS 2122) that agrees with our calculations. The maximum discrepancies in pressure between our first-principles predictions and LEOS 2122 are $sim$18% and occur at temperatures between 6$times$10$^3$--2$times$10$^5$ K, which we believe originate from differences in the ion thermal term and the cold curve that are modeled in LEOS 2122 in comparison with our first-principles calculations. In addition, we have developed three new equation of state models and applied them to 1D hydrodynamic simulations of a polar direct-drive NIF implosion, demonstrating that these new models are now available for future ICF design studies.
The equation of state (EOS) of materials at warm dense conditions poses significant challenges to both theory and experiment. We report a combined computational, modeling, and experimental investigation leveraging new theoretical and experimental cap
We report a theoretical equation of state (EOS) table for boron across a wide range of temperatures (5.1$times$10$^4$-5.2$times$10$^8$ K) and densities (0.25-49 g/cm$^3$), and experimental shock Hugoniot data at unprecedented high pressures (5608$pm$
We report a numerical study of the equation of state of crystalline body-centered-cubic (BCC) hydrogen, tackled with a variety of complementary many-body wave function methods. These include continuum stochastic techniques of fixed-node diffusion and
We present a suite of programs to determine the ground state of the time-independent Gross-Pitaevskii equation, used in the simulation of Bose-Einstein condensates. The calculation is based on the Optimal Damping Algorithm, ensuring a fast convergenc
Concomitant with the rapid development of quantum technologies, challenging demands arise concerning the certification and characterization of devices. The promises of the field can only be achieved if stringent levels of precision of components can