ترغب بنشر مسار تعليمي؟ اضغط هنا

Equation of state of atomic solid hydrogen by stochastic many-body wave function methods

66   0   0.0 ( 0 )
 نشر من قبل Sam Azadi
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report a numerical study of the equation of state of crystalline body-centered-cubic (BCC) hydrogen, tackled with a variety of complementary many-body wave function methods. These include continuum stochastic techniques of fixed-node diffusion and variational quantum Monte Carlo, and the Hilbert space stochastic method of full configuration-interaction quantum Monte Carlo. In addition, periodic coupled-cluster methods were also employed. Each of these methods is underpinned with different strengths and approximations, but their combination in order to perform reliable extrapolation to complete basis set and supercell size limits gives confidence in the final results. The methods were found to be in good agreement for equilibrium cell volumes for the system in the BCC phase, with a lattice parameter of 3.307 Bohr.



قيم البحث

اقرأ أيضاً

98 - Sam Azadi , N. D. Drummond , 2016
We present an accurate study of the static-nucleus electronic energy band gap of solid molecular hydrogen at high pressure. The excitonic and quasiparticle gaps of the $C2/c$, $Pc$, $Pbcn$, and $P6_3/m$ structures at pressures of 250, 300, and 350~GP a are calculated using the fixed-node diffusion quantum Monte Carlo (DMC) method. The difference between the mean-field and many-body band gaps at the same density is found to be almost independent of system size and can therefore be applied as a scissor correction to the mean-field gap of an infinite system to obtain an estimate of the many-body gap in the thermodynamic limit. By comparing our static-nucleus DMC energy gaps with available experimental results, we demonstrate the important role played by nuclear quantum effects in the electronic structure of solid hydrogen. Our DMC results suggest that the metallization of high-pressure solid hydrogen occurs via a structural phase transition rather than band gap closure.
301 - Jing Li , Valerio Olevano 2020
We check the ab initio GW approximation and Bethe-Salpeter equation (BSE) many-body methodology against the exact solution benchmark of the hydrogen molecule H$_2$ ground state and excitation spectrum, and in comparison with the configuration interac tion (CI) and time-dependent Hartree-Fock methods. The comparison is made on all the states we could unambiguously identify from the excitonic wave functions symmetry. At the equilibrium distance $R = 1.4 , a_0$, the GW+BSE energy levels are in good agreement with the exact results, with an accuracy of 0.1~0.2 eV. GW+BSE potential-energy curves are also in good agreement with the CI and the exact result up to $2.3 , a_0$. The solution no longer exists beyond $3.0 , a_0$ for triplets ($4.3 , a_0$ for singlets) due to instability of the ground state. We tried to improve the GW reference ground state by a renormalized random-phase approximation (r-RPA), but this did not solve the problem.
186 - Sam Azadi , Thomas D. Kuhne 2011
Being the simplest element with just one electron and proton the electronic structure of the Hydrogen atom is known exactly. However, this does not hold for the complex interplay between them in a solid and in particular not at high pressure that is known to alter the crystal as well as the electronic structure. Back in 1935 Wigner and Huntington predicted that at very high pressure solid molecular hydrogen would dissociate and form an atomic solid that is metallic. In spite of intense research efforts the experimental realization, as well as the theoretical determination of the crystal structure has remained elusive. Here we present a computational study showing that the distorted hexagonal P6$_3$/m structure is the most likely candidate for Phase III of solid hydrogen. We find that the pairing structure is very persistent and insulating over the whole pressure range, which suggests that metallization due to dissociation may precede eventual bandgap closure. Due to the fact that this not only resolve one of major disagreement between theory and experiment, but also excludes the conjectured existence of phonon-driven superconductivity in solid molecular hydrogen, our results involve a complete revision of the zero-temperature phase diagram of Phase III.
We have studied solid hydrogen under pressure at low temperatures. With increasing pressure we observe changes in the sample, going from transparent, to black, to a reflective metal, the latter studied at a pressure of 495 GPa. We have measured the r eflectance as a function of wavelength in the visible spectrum finding values as high as 0.90 from the metallic hydrogen. We have fit the reflectance using a Drude free electron model to determine the plasma frequency of 30.1 eV at T= 5.5 K, with a corresponding electron carrier density of 6.7x1023 particles/cm3, consistent with theoretical estimates. The properties are those of a metal. Solid metallic hydrogen has been produced in the laboratory.
A large collaboration carefully benchmarks 20 first principles many-body electronic structure methods on a test set of 7 transition metal atoms, and their ions and monoxides. Good agreement is attained between the 3 systematically converged methods, resulting in experiment-free reference values. These reference values are used to assess the accuracy of modern emerging and scalable approaches to the many-electron problem. The most accurate methods obtain energies indistinguishable from experimental results, with the agreement mainly limited by the experimental uncertainties. Comparison between methods enables a unique perspective on calculations of many-body systems of electrons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا