ﻻ يوجد ملخص باللغة العربية
Let $F$ be an algebraically closed field of characteristic zero and let $G$ be a finite group. Consider $G$-graded simple algebras $A$ which are finite dimensional and $e$-central over $F$, i.e. $Z(A)_{e} := Z(A)cap A_{e} = F$. For any such algebra we construct a textit{generic} $G$-graded algebra $mathcal{U}$ which is textit{Azumaya} in the following sense. $(1)$ textit{$($Correspondence of ideals$)$}: There is one to one correspondence between the $G$-graded ideals of $mathcal{U}$ and the ideals of the ring $R$, the $e$-center of $mathcal{U}$. $(2)$ textit{Artin-Procesi condition}: $mathcal{U}$ satisfies the $G$-graded identities of $A$ and no nonzero $G$-graded homomorphic image of $mathcal{U}$ satisfies properly more identities. $(3)$ textit{Generic}: If $B$ is a $G$-graded algebra over a field then it is a specialization of $mathcal{U}$ along an ideal $mathfrak{a} in spec(Z(mathcal{U})_{e})$ if and only if it is a $G$-graded form of $A$ over its $e$-center. We apply this to characterize finite dimensional $G$-graded simple algebras over $F$ that admit a $G$-graded division algebra form over their $e$-center.
Let G be any group and F an algebraically closed field of characteristic zero. We show that any G-graded finite dimensional associative G-simple algebra over F is determined up to a G-graded isomorphism by its G-graded polynomial identities. This res
Let G be a finite group, (g_{1},...,g_{r}) an (unordered) r-tuple of G^{(r)} and x_{i,g_i}s variables that correspond to the g_is, i=1,...,r. Let F<x_{1,g_1},...,x_{r,g_r}> be the corresponding free G-graded algebra where F is a field of zero charact
Let A and B be finite dimensional simple real algebras with division gradings by an abelian group G. In this paper we give necessary and sufficient conditions for the coincidence of the graded identities of A and B. We also prove that every finite di
Let $H$ be a finite dimensional semisimple Hopf algebra, $A$ a differential graded (dg for short) $H$-module algebra. Then the smash product algebra $A#H$ is a dg algebra. For any dg $A#H$-module $M$, there is a quasi-isomorphism of dg algebras: $mat
As an instance of a linear action of a Hopf algebra on a free associative algebra, we consider finite group gradings of a free algebra induced by gradings on the space spanned by the free generators. The homogeneous component corresponding to the ide