ترغب بنشر مسار تعليمي؟ اضغط هنا

Hopf algebra actions on differential graded algebras and applications

199   0   0.0 ( 0 )
 نشر من قبل Ji Wei He
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $H$ be a finite dimensional semisimple Hopf algebra, $A$ a differential graded (dg for short) $H$-module algebra. Then the smash product algebra $A#H$ is a dg algebra. For any dg $A#H$-module $M$, there is a quasi-isomorphism of dg algebras: $mathrm{RHom}_A(M,M)#Hlongrightarrow mathrm{RHom}_{A#H}(Mot H,Mot H)$. This result is applied to $d$-Koszul algebras, Calabi-Yau algebras and AS-Gorenstein dg algebras



قيم البحث

اقرأ أيضاً

Let $Bbbk$ be a base field of characteristic $p>0$ and let $U$ be the restricted enveloping algebra of a 2-dimensional nonabelian restricted Lie algebra. We classify all inner-faithful $U$-actions on noetherian Koszul Artin-Schelter regular algebras of global dimension up to three.
We study actions of semisimple Hopf algebras H on Weyl algebras A over a field of characteristic zero. We show that the action of H on A must factor through a group algebra; in other words, if H acts inner faithfully on A, then H is cocommutative. Th e techniques used include reduction modulo a prime number and the study of semisimple cosemisimple Hopf actions on division algebras.
We prove that any action of a finite dimensional Hopf algebra H on a Weyl algebra A over an algebraically closed field of characteristic zero factors through a group action. In other words, Weyl algebras do not admit genuine finite quantum symmetries . This improves a previous result by the authors, where the statement was established for semisimple H. The proof relies on a refinement of the method previously used: namely, considering reductions of the action of H on A modulo prime powers rather than primes. We also show that the result holds, more generally, for algebras of differential operators. This gives an affirmative answer to a question posed by the last two authors.
305 - Pavel Etingof , Cris Negron 2019
We examine actions of finite-dimensional pointed Hopf algebras on central simple division algebras in characteristic 0. (By a Hopf action we mean a Hopf module algebra structure.) In all examples considered, we show that the given Hopf algebra does a dmit a faithful action on a central simple division algebra, and we construct such a division algebra. This is in contrast to earlier work of Etingof and Walton, in which it was shown that most pointed Hopf algebras do not admit faithful actions on fields. We consider all bosonizations of Nichols algebras of finite Cartan type, small quantum groups, generalized Taft algebras with non-nilpotent skew primitive generators, and an example of non-Cartan type.
321 - Juan Cuadra , Pavel Etingof 2015
Let $mathbb{k}$ be an algebraically closed field of characteristic zero. Let $D$ be a division algebra of degree $d$ over its center $Z(D)$. Assume that $mathbb{k}subset Z(D)$. We show that a finite group $G$ faithfully grades $D$ if and only if $G$ contains a normal abelian subgroup of index dividing $d$. We also prove that if a finite dimensional Hopf algebra coacts on $D$ defining a Hopf-Galois extension, then its PI degree is at most $d^2$. Finally, we construct Hopf-Galois actions on division algebras of twisted group algebras attached to bijective cocycles.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا