ﻻ يوجد ملخص باللغة العربية
As an instance of a linear action of a Hopf algebra on a free associative algebra, we consider finite group gradings of a free algebra induced by gradings on the space spanned by the free generators. The homogeneous component corresponding to the identity of the group is a free subalgebra which is graded by the usual degree. We look into its Hilbert series and prove that it is a rational function by giving an explicit formula. As an application, we show that, under suitable conditions, this subalgebra is finitely generated if and only if the grading on the base vector space is trivial.
In 1992, following earlier conjectures of Lichtman and Makar-Limanov, Klein conjectured that a noncommutative domain must contain a free, multiplicative, noncyclic subsemigroup. He verified the conjecture when the center is uncountable. In this note
Let $k$ be a field containing an algebraically closed field of characteristic zero. If $G$ is a finite group and $D$ is a division algebra over $k$, finite dimensional over its center, we can associate to a faithful $G$-grading on $D$ a normal abelia
We show that the invariants of a free associative algebra of finite rank under a linear action of a finite-dimensional Hopf algebra generated by group-like and skew-primitive elements form a finitely generated algebra exactly when the action is scala
We observe that a finitely generated algebraic algebra R (over a field) is finite dimensional if and only if the associated graded ring grR is right noetherian, if and only if grR has right Krull dimension, if and only if grR satisfies a polynomial identity.
In this paper, we establish the Composition-Diamond lemma for associative algebras with multiple linear operators. As applications, we obtain Groebner-Shirshov bases of free Rota-Baxter algebra, $lambda$-differential algebra and $lambda$-differential