ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonreciprocal ground-state cooling of multiple mechanical resonators

94   0   0.0 ( 0 )
 نشر من قبل Denggao Lai
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The simultaneous ground-state cooling of multiple degenerate or near-degenerate mechanical modes coupled to a common cavity-field mode has become an outstanding challenge in cavity optomechanics. This is because the dark modes formed by these mechanical modes decouple from the cavity mode and prevent extracting energy from the dark modes through the cooling channel of the cavity mode. Here we propose a universal and reliable dark-mode-breaking method to realize the simultaneous ground-state cooling of two degenerate or nondegenerate mechanical modes by introducing a phasedependent phonon-exchange interaction, which is used to form a loop-coupled configuration. We find an asymmetrical cooling performance for the two mechanical modes and expound this phenomenon based on the nonreciprocal energy transfer mechanism, which leads to the directional flow of phonons between the two mechanical modes. We also generalize this method to cool multiple mechanical modes. The physical mechanism in this cooling scheme has general validity and this method can be extended to break other dark-mode and dark-state effects in physics.



قيم البحث

اقرأ أيضاً

261 - Deng-Gao Lai , Fen Zou , B. P. Hou 2018
Quantum manipulation of coupled mechanical resonators has become an important research topic in optomechanics because these systems can be used to study the quantum coherence effects involving multiple mechanical modes. A prerequisite for observing m acroscopic mechanical coherence is to cool the mechanical resonators to their ground state. Here we propose a theoretical scheme to cool two coupled mechanical resonators by introducing an optomechanical interface. The final mean phonon numbers in the two mechanical resonators are calculated exactly and the results show that the ground-state cooling is achievable in the resolved-sideband regime and under the optimal driving. By adiabatically eliminating the cavity field in the large-decay regime, we obtain analytical results of the cooling limits, which show the smallest achievable phonon numbers and the parameter conditions under which the optimal cooling is achieved. Finally, the scheme is extended to the cooling of a chain of coupled mechanical resonators.
We propose an optimization scheme for ground-state cooling of a mechanical mode by coupling to a general three-level system. We formulate the optimization scheme, using the master equation approach, over a broad range of system parameters including d etunings, decay rates, coupling strengths, and pumping rate. We implement the optimization scheme on three physical systems: a colloidal quantum dot coupled to its confined phonon mode, a polariton coupled to a mechanical resonator mode, and a coupled-cavity system coupled to a mechanical resonator mode. These three physical systems span a broad range of mechanical mode frequencies, coupling rates, and decay rates. Our optimization scheme lowers the stead-state phonon number in all three cases by orders of magnitude. We also calculate the net cooling rate by estimating the phonon decay rate and show that the optimized system parameters also result in efficient cooling. The proposed optimization scheme can be readily extended to any generic driven three-level system coupled to a mechanical mode.
100 - G. Rastelli , W. Belzig 2019
We discuss two theoretical proposals for controlling the nonequilibrium steady state of nanomechanical resonators using quantum electronic transport. Specifically?, we analyse two approaches to achieve the ground-state cooling of the mechanical vibra tion coupled to a quantum dot embedded between (i) spin-polarised contacts or (ii) a normal metal and a superconducting contact. Assuming a suitable coupling between the vibrational modes and the charge or spin of the electrons in the quantum dot, we show that ground-state cooling of the mechanical oscillator is within the state of the art for suspended carbon nanotube quantum dots operating as electromechanical devices.
403 - R. Lechner , C. Maier , C. Hempel 2016
Electromagnetically-induced-transparency (EIT) cooling is a ground-state cooling technique for trapped particles. EIT offers a broader cooling range in frequency space compared to more established methods. In this work, we experimentally investigate EIT cooling in strings of trapped atomic ions. In strings of up to 18 ions, we demonstrate simultaneous ground state cooling of all radial modes in under 1 ms. This is a particularly important capability in view of emerging quantum simulation experiments with large numbers of trapped ions. Our analysis of the EIT cooling dynamics is based on a novel technique enabling single-shot measurements of phonon numbers, by rapid adiabatic passage on a vibrational sideband of a narrow transition.
83 - Yu-Long Liu , Yu-xi Liu 2016
When a gain system is coupled to a loss system, the energy usually flows from the gain system to the loss one. We here present a counterintuitive theory for the ground-state cooling of the mechanical resonator in optomechanical system via a gain cavi ty. The energy flows first from the mechanical resonator into the loss cavity, then into the gain cavity, and finally localizes there. The energy localization in the gain cavity dramatically enhances the cooling rate of the mechanical resonator. Moreover, we show that unconventional optical spring effect, e.g., giant frequency shift and optically induced damping of the mechanical resonator, can be realized. Those feature a pre-cooling free ground-state cooling, i.e., the mechanical resonator in thermal excitation at room temperature can directly be cooled to its ground state. This cooling approach has the potential application for fundamental tests of quantum physics without complicated cryogenic setups.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا