ترغب بنشر مسار تعليمي؟ اضغط هنا

Ground state cooling of nanomechanical resonators by electron transport

101   0   0.0 ( 0 )
 نشر من قبل Gianluca Rastelli Dr.
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss two theoretical proposals for controlling the nonequilibrium steady state of nanomechanical resonators using quantum electronic transport. Specifically?, we analyse two approaches to achieve the ground-state cooling of the mechanical vibration coupled to a quantum dot embedded between (i) spin-polarised contacts or (ii) a normal metal and a superconducting contact. Assuming a suitable coupling between the vibrational modes and the charge or spin of the electrons in the quantum dot, we show that ground-state cooling of the mechanical oscillator is within the state of the art for suspended carbon nanotube quantum dots operating as electromechanical devices.

قيم البحث

اقرأ أيضاً

The simultaneous ground-state cooling of multiple degenerate or near-degenerate mechanical modes coupled to a common cavity-field mode has become an outstanding challenge in cavity optomechanics. This is because the dark modes formed by these mechani cal modes decouple from the cavity mode and prevent extracting energy from the dark modes through the cooling channel of the cavity mode. Here we propose a universal and reliable dark-mode-breaking method to realize the simultaneous ground-state cooling of two degenerate or nondegenerate mechanical modes by introducing a phasedependent phonon-exchange interaction, which is used to form a loop-coupled configuration. We find an asymmetrical cooling performance for the two mechanical modes and expound this phenomenon based on the nonreciprocal energy transfer mechanism, which leads to the directional flow of phonons between the two mechanical modes. We also generalize this method to cool multiple mechanical modes. The physical mechanism in this cooling scheme has general validity and this method can be extended to break other dark-mode and dark-state effects in physics.
98 - P. Rabl , A. Shnirman , 2004
An experimental demonstration of a non-classical state of a nanomechanical resonator is still an outstanding task. In this paper we show how the resonator can be cooled and driven into a squeezed state by a bichromatic microwave coupling to a charge qubit. The stationary oscillator state exhibits a reduced noise in one of the quadrature components by a factor of 0.5 - 0.2. These values are obtained for a 100 MHz resonator with a Q-value of 10$^4$ to 10$^5$ and for support temperatures of T $approx$ 25 mK. We show that the coupling to the charge qubit can also be used to detect the squeezed state via measurements of the excited state population. Furthermore, by extending this measurement procedure a complete quantum state tomography of the resonator state can be performed. This provides a universal tool to detect a large variety of different states and to prove the quantum nature of a nanomechanical oscillator.
358 - Nan Zhao , D.L. Zhou , Jia-Lin Zhu 2007
We propose and study a spin-orbit interaction based mechanism to actively cool down the torsional vibration of a nanomechanical resonator made by semiconductor materials. We show that the spin-orbit interactions of electrons can induce a coherent cou pling between the electron spins and the torsional modes of nanomechanical vibration. This coherent coupling leads to an active cooling for the torsional modes via the dynamical thermalization of the resonator and the spin ensemble.
Typical of modern quantum technologies employing nanomechanical oscillators is to demand few mechanical quantum excitations, for instance, to prolong coherence times of a particular task or, to engineer a specific non-classical state. For this reason , we devoted the present work to exhibit how to bring an initial thermalized nanomechanical oscillator near to its ground state. Particularly, we focus on extending the novel results of D. D. B. Rao textit{et al.}, Phys. Rev. Lett. textbf{117}, 077203 (2016), where a mechanical object can be heated up, squeezed, or cooled down near to its ground state through conditioned single-spin measurements. In our work, we study a similar iterative spin-mechanical system when $N$ spins interact with the mechanical oscillator. Here, we have also found that the postselection procedure acts as a discarding process, i.e., we steer the mechanics to the ground state by dynamically filtering its vibrational modes. We show that when considering symmetric collective spin postselection, the inclusion of $N$ spins into the quantum dynamics results highly beneficial. In particular, decreasing the total number of iterations to achieve the ground-state, with a success rate of probability comparable with the one obtained from the single-spin case.
Controlling the strain in two-dimensional materials is an interesting avenue to tailor the mechanical properties of nanoelectromechanical systems. Here we demonstrate a technique to fabricate ultrathin tantalum oxide nanomechanical resonators with la rge stress by laser-oxidation of nano-drumhead resonators made out of tantalum diselenide (TaSe2), a layered 2D material belonging to the metal dichalcogenides. Prior to the study of their mechanical properties with a laser interferometer, we checked the oxidation and crystallinity of the freely-suspended tantalum oxide in a high-resolution electron microscope. We show that the stress of tantalum oxide resonators increase by 140 MPa (with respect to pristine TaSe2 resonators) which causes an enhancement of quality factor (14 times larger) and resonance frequency (9 times larger) of these resonators.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا