ﻻ يوجد ملخص باللغة العربية
We present a comparative study of inflation in two theories of quadratic gravity with {it gauged} scale symmetry: 1) the original Weyl quadratic gravity and 2) the theory defined by a similar action but in the Palatini approach obtained by replacing the Weyl connection by its Palatini counterpart. These theories have different vectorial non-metricity induced by the gauge field ($w_mu$) of this symmetry. Both theories have a novel spontaneous breaking of gauged scale symmetry, in the absence of matter, where the necessary scalar field is not added ad-hoc to this purpose but is of geometric origin and part of the quadratic action. The Einstein-Proca action (of $w_mu$), Planck scale and metricity emerge in the broken phase after $w_mu$ acquires mass (Stueckelberg mechanism), then decouples. In the presence of matter ($phi_1$), non-minimally coupled, the scalar potential is similar in both theories up to couplings and field rescaling. For small field values the potential is Higgs-like while for large fields inflation is possible. Due to their $R^2$ term, both theories have a small tensor-to-scalar ratio ($rsim 10^{-3}$), larger in Palatini case. For a fixed spectral index $n_s$, reducing the non-minimal coupling ($xi_1$) increases $r$ which in Weyl theory is bounded from above by that of Starobinsky inflation. For a small enough $xi_1leq 10^{-3}$, unlike the Palatini version, Weyl theory gives a dependence $r(n_s)$ similar to that in Starobinsky inflation, while also protecting $r$ against higher dimensional operators corrections.
We study quadratic gravity $R^2+R_{[mu u]}^2$ in the Palatini formalism where the connection and the metric are independent. This action has a {it gauged} scale symmetry (also known as Weyl gauge symmetry) of Weyl gauge field $v_mu= (tildeGamma_mu-Ga
Scalar fields, $phi_i$ can be coupled non-minimally to curvature and satisfy the general criteria: (i) the theory has no mass input parameters, including the Planck mass; (ii) the $phi_i$ have arbitrary values and gradients, but undergo a general exp
We study quantum effects in Higgs inflation in the Palatini formulation of gravity, in which the metric and connection are treated as independent variables. We exploit the fact that the cutoff, above which perturbation theory breaks down, is higher t
We introduce a minimal and yet comprehensive framework with $CP$- and classical scale-symmetries, in order to simultaneously address the hierarchy problem, neutrino masses, dark matter, and inflation. One complex gauge singlet scalar and three flavor
In the context of the Palatini formalism of gravity with an $R^{2}$ term, a $phi^{2}$ potential can be consistent with the observed bound on $r$ whilst retaining the successful prediction for $n_{s}$. Here we show that the Palatini $phi^{2} R^2$ infl