ﻻ يوجد ملخص باللغة العربية
We study quadratic gravity $R^2+R_{[mu u]}^2$ in the Palatini formalism where the connection and the metric are independent. This action has a {it gauged} scale symmetry (also known as Weyl gauge symmetry) of Weyl gauge field $v_mu= (tildeGamma_mu-Gamma_mu)/2$, with $tildeGamma_mu$ ($Gamma_mu$) the trace of the Palatini (Levi-Civita) connection, respectively. The underlying geometry is non-metric due to the $R_{[mu u]}^2$ term acting as a gauge kinetic term for $v_mu$. We show that this theory has an elegant spontaneous breaking of gauged scale symmetry and mass generation in the absence of matter, where the necessary scalar field ($phi$) is not added ad-hoc to this purpose but is extracted from the $R^2$ term. The gauge field becomes massive by absorbing the derivative term $partial_mulnphi$ of the Stueckelberg field (dilaton). In the broken phase one finds the Einstein-Proca action of $v_mu$ of mass proportional to the Planck scale $Msim langlephirangle$, and a positive cosmological constant. Below this scale $v_mu$ decouples, the connection becomes Levi-Civita and metricity and Einstein gravity are recovered. These results remain valid in the presence of non-minimally coupled scalar field (Higgs-like) with Palatini connection and the potential is computed. In this case the theory gives successful inflation and a specific prediction for the tensor-to-scalar ratio $0.007leq r leq 0.01$ for current spectral index $n_s$ (at $95%$CL) and N=60 efolds. This value of $r$ is mildly larger than in inflation in Weyl quadratic gravity of similar symmetry, due to different non-metricity. This establishes a connection between non-metricity and inflation predictions and enables us to test such theories by future CMB experiments.
We present a comparative study of inflation in two theories of quadratic gravity with {it gauged} scale symmetry: 1) the original Weyl quadratic gravity and 2) the theory defined by a similar action but in the Palatini approach obtained by replacing
We show that, for values of the axion decay constant parametrically close to the GUT scale, the Peccei-Quinn phase transition may naturally occur during warm inflation. This results from interactions between the Peccei-Quinn scalar field and the ambi
In the framework of classical scale invariance, we consider quadratic gravity in the Palatini formalism and investigate the inflationary predictions of the theory. Our model corresponds to a two-field scalar-tensor theory, that involves the Higgs fie
We study a scale-invariant model of quadratic gravity with a non-minimally coupled scalar field. We focus on cosmological solutions and find that scale invariance is spontaneously broken and a mass scale naturally emerges. Before the symmetry breakin
We point out that the successful generation of the electroweak scale via gravitational instanton configurations in certain scalar-tensor theories can be viewed as the aftermath of a simple requirement: the existence of a quadratic pole with a suffici