ﻻ يوجد ملخص باللغة العربية
We study quantum effects in Higgs inflation in the Palatini formulation of gravity, in which the metric and connection are treated as independent variables. We exploit the fact that the cutoff, above which perturbation theory breaks down, is higher than the scale of inflation. Unless new physics above the cutoff leads to unnaturally large corrections, we can directly connect low-energy physics and inflation. On the one hand, the lower bound on the top Yukawa coupling due to collider experiments leads to an upper bound on the non-minimal coupling of the Higgs field to gravity: $xi lesssim 10^8$. On the other hand, the Higgs potential can only support successful inflation if $xi gtrsim 10^6$. This leads to a fairly strict upper bound on the top Yukawa coupling of $0.925$ (defined in the $overline{text{MS}}$-scheme at the energy scale $173.2,text{GeV}$) and constrains the inflationary prediction for the tensor-to-scalar ratio. Additionally, we compare our findings to metric Higgs inflation.
We review the recent progress in Higgs inflation focusing on Higgs-$R^2$ inflation, primordial black hole production and the $R^3$ term.
We study inflation driven by the Higgs field in the Einstein-Cartan formulation of gravity. In this theory, the presence of the Holst and Nieh-Yan terms with the Higgs field non-minimally coupled to them leads to three additional coupling constants.
We present a comparative study of inflation in two theories of quadratic gravity with {it gauged} scale symmetry: 1) the original Weyl quadratic gravity and 2) the theory defined by a similar action but in the Palatini approach obtained by replacing
In the context of the Palatini formalism of gravity with an $R^{2}$ term, a $phi^{2}$ potential can be consistent with the observed bound on $r$ whilst retaining the successful prediction for $n_{s}$. Here we show that the Palatini $phi^{2} R^2$ infl
In this work, we revisit the non-minimally coupled Higgs Inflation scenario and investigate its observational viability in light of the current Cosmic Microwave Background, Baryon Acoustic Oscillation and type Ia Supernovae data. We explore the effec