ترغب بنشر مسار تعليمي؟ اضغط هنا

Chaotic motion of scalar particle coupling to Chern-Simons invariant in Kerr black hole spacetime

52   0   0.0 ( 0 )
 نشر من قبل Chen Songbai
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present firstly the equation of motion for the test scalar particle coupling to the Chern-Simons invariant in Kerr black hole spacetime by the short-wave approximation. We have analyzed the dynamical behaviors of the test coupled particles by applying techniques including Poincare sections, fast Lyapunov exponent indicator, bifurcation diagram and basins of attraction. It is shown that there exists chaotic phenomenon in the motion of scalar particle interacted with the Chern-Simons invariant in a Kerr black hole spacetime. With the increase of the coupling strength, the motion of the coupled particles for the chosen parameters first undergoes a series of transitions betweens chaotic motion and regular motion and then falls into horizon or escapes to spatial infinity. Thus, the coupling between scalar particle and Chern-Simons invariant yields the richer dynamical behavior of scalar particle in a Kerr black hole spacetime.



قيم البحث

اقرأ أيضاً

106 - Songbai Chen , Jiliang Jing 2010
We study the absorption probability and Hawking radiation spectra of a phantom scalar field in the Kerr black hole spacetime. We find that the presence of the negative kinetic energy terms modifies the standard results in the greybody factor, super-r adiance and Hawking radiation. Comparing with the usual scalar particle, the phantom scalar emission is enhanced in the black hole spacetime.
Testing general relativity in the non-linear, dynamical, strong-field regime of gravity is one of the major goals of gravitational wave astrophysics. Performing precision tests of general relativity (GR) requires numerical inspiral, merger, and ringd own waveforms for binary black hole (BBH) systems in theories beyond GR. Currently, GR and scalar-tensor gravity are the only theories amenable to numerical simulations. In this article, we present a well-posed perturbation scheme for numerically integrating beyond-GR theories that have a continuous limit to GR. We demonstrate this scheme by simulating BBH mergers in dynamical Chern-Simons gravity (dCS), to linear order in the perturbation parameter. We present mode waveforms and energy fluxes of the dCS pseudoscalar field from our numerical simulations. We find good agreement with analytic predictions at early times, including the absence of pseudoscalar dipole radiation. We discover new phenomenology only accessible through numerics: a burst of dipole radiation during merger. We also quantify the self-consistency of the perturbation scheme. Finally, we estimate bounds that GR-consistent LIGO detections could place on the new dCS length scale, approximately $ell lesssim mathcal{O}(10)~mathrm{km}$.
We obtain a perturbative solution for rotating charged black holes in 5-dimensional Einstein-Maxwell-Chern-Simons theory with a negative cosmological constant. We start from a small undeformed Kerr-AdS solution and use the electric charge as a pertur bative parameter to build up black holes with equal-magnitude angular momenta up to forth order. These black hole solutions are described by three parameters, the charge, horizon radius and horizon angular velocity. We determine the physical quantities of these black holes and study their dependence on the parameters of black holes and arbitrary Chern-Simons coefficient. In particular, for values of CS coupling constant beyond its supergravity amount, due to a rotational instability, counterrotating black holes arise. Also the rotating solutions appear to have vanishing angular momenta and do not manifest uniquely by their global charges.
We produce the first numerical relativity binary black hole gravitational waveforms in a higher-curvature theory beyond general relativity. In particular, we study head-on collisions of binary black holes in order-reduced dynamical Chern-Simons gravi ty. This is a precursor to producing beyond-general-relativity waveforms for inspiraling binary black hole systems that are useful for gravitational wave detection. Head-on collisions are interesting in their own right, however, as they cleanly probe the quasi-normal mode spectrum of the final black hole. We thus compute the leading-order dynamical Chern-Simons modifications to the complex frequencies of the post-merger gravitational radiation. We consider equal-mass systems, with equal spins oriented along the axis of collision, resulting in remnant black holes with spin. We find modifications to the complex frequencies of the quasi-normal mode spectrum that behave as a power law with the spin of the remnant, and that are not degenerate with the frequencies associated with a Kerr black hole of any mass and spin. We discuss these results in the context of testing general relativity with gravitational wave observations.
This paper explores the neutral particle motion and collisional Penrose process in ergoregion of the braneworld Kerr black hole. We analyze the properties of event horizon, ergosphere and static limit. The particle collision in ergoregion via the Pen rose process is investigated. Furthermore, we study the negative energy states and show that the sign of particle energy can be uniquely determined by the sign of angular momentum. In addition, we study the Wald inequality to determine the limits of energy extraction via the Penrose process and also find lower bound of the irreducible mass. The expression for the efficiency of energy extraction from the brane Kerr black hole is found. Finally, we compare our results with that obtained from the Kerr black hole. It is concluded that efficiency increases with the increase of rotation as well as brane parameter b of the black hole.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا