ﻻ يوجد ملخص باللغة العربية
We study the absorption probability and Hawking radiation spectra of a phantom scalar field in the Kerr black hole spacetime. We find that the presence of the negative kinetic energy terms modifies the standard results in the greybody factor, super-radiance and Hawking radiation. Comparing with the usual scalar particle, the phantom scalar emission is enhanced in the black hole spacetime.
We present firstly the equation of motion for the test scalar particle coupling to the Chern-Simons invariant in Kerr black hole spacetime by the short-wave approximation. We have analyzed the dynamical behaviors of the test coupled particles by appl
Using Leavers continue fraction and time domain method, we study the wave dynamics of phantom scalar perturbation in a Schwarzschild black string spacetime. We find that the quasinormal modes contain the imprint from the wavenumber $k$ of the fifth d
Using Leavers continue fraction and time domain method, we investigate the wave dynamics of phantom scalar perturbation in the background of Schwarzschild black hole. We find that the presence of the negative kinetic energy terms modifies the standar
We study the absorption probability and Hawking radiation of the scalar field in the rotating G{o}del black hole in minimal five-dimensional gauged supergravity. We find that G{o}del parameter $j$ imprints in the greybody factor and Hawking radiation
By introducing a specific etheric-like vector in the Dirac equation with Lorentz Invariance Violation (LIV) in the curved spacetime, an improved method for quantum tunneling radiation of fermions is proposed. As an example, we apply this new method t