ﻻ يوجد ملخص باللغة العربية
It is proved that a finite intersection of special preenveloping ideals in an exact category $({mathcal A}; {mathcal E})$ is a special preenveloping ideal. Dually, a finite intersection of special precovering ideals is a special precovering ideal. A counterexample of Happel and Unger shows that the analogous statement about special preenveloping subcategories does not hold in classical approximation theory. If the exact category has exact coproducts, resp., exact products, these results extend to intersections of infinite families of special peenveloping, resp., special precovering, ideals. These techniques yield the Bongartz-Eklof-Trlifaj Lemma: if $a colon A to B$ is a morphism in ${mathcal A},$ then the ideal $a^{perp}$ is special preenveloping. This is an ideal version of the Eklof-Trlifaj Lemma, but the proof is based on that of Bongartz Lemma. The main consequence is that the ideal cotorsion pair generated by a small ideal is complete.
Many hard combinatorial problems can be modeled by a system of polynomial equations. N. Alon coined the term polynomial method to describe the use of nonlinear polynomials when solving combinatorial problems. We continue the exploration of the polyno
We develop category-theoretic framework for universal homogeneous objects, with some applications in the theory of Banach spaces, linear orderings, and in topology of compact spaces.
In this paper we completely characterize lattice ideals that are complete intersections or equivalently complete intersections finitely generated semigroups of $bz^noplus T$ with no invertible elements, where $T$ is a finite abelian group. We also ch
Let $Lsubset mathbb{Z}^n$ be a lattice and $I_L=langle x^{bf u}-x^{bf v}: {bf u}-{bf v}in Lrangle$ be the corresponding lattice ideal in $Bbbk[x_1,ldots, x_n]$, where $Bbbk$ is a field. In this paper we describe minimal binomial generating sets of $I
Many special classes of simplicial sets, such as the nerves of categories or groupoids, the 2-Segal sets of Dyckerhoff and Kapranov, and the (discrete) decomposition spaces of G{a}lvez, Kock, and Tonks, are characterized by the property of sending ce