ترغب بنشر مسار تعليمي؟ اضغط هنا

Coexistence of Type-uppercaseexpandafter{romannumeral2} and Type-uppercaseexpandafter{romannumeral4} Dirac Fermions in SrAgBi

54   0   0.0 ( 0 )
 نشر من قبل Tianchi Ma
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Until now scientists have found tree types of Dirac Fermions in crystals and these three types of Dirac Fermions can be described by one model. Here, we find a type of Dirac fermions that escapes this model. We find this type of Dirac fermions can exist in SrAgBi and is dubbed type-uppercaseexpandafter{romannumeral4} Dirac Fermions. The band near the type-uppercaseexpandafter{romannumeral4} Dirac points is nonlinear and the electron pocket and the hole pocket are from the same band. It is worth pointing out that there is a type-uppercaseexpandafter{romannumeral2} Dirac Fermion near this new Dirac Fermion. So we used two models to describe the coexistence of these two Dirac fermions. Topological surface states of these two Dirac points are also calculated. We envision that our findings will stimulate researchers to study novel physics of type-uppercaseexpandafter{romannumeral4} Dirac fermions, as well as the interplay of type-uppercaseexpandafter{romannumeral2} and type-uppercaseexpandafter{romannumeral4} Dirac fermions.



قيم البحث

اقرأ أيضاً

Topological semimetals have attracted extensive research interests for realizing condensed matter physics counterparts of three-dimensional Dirac and Weyl fermions, which were originally introduced in high energy physics. Recently it has been propose d that type-II Dirac semimetal can host a new type of Dirac fermions which break Lorentz invariance and therefore does not have counterpart in high energy physics. Here we report the electronic structure of high quality PtSe$_2$ crystals to provide direct evidence for the existence of three-dimensional type-II Dirac fermions. A comparison of the crystal, vibrational and electronic structure to a sister compound PtTe$_2$ is also discussed. Our work provides an important platform for exploring the novel quantum phenomena in the PtSe$_2$ class of type-II Dirac semimetals.
Transition-metal dichalcogenides (TMDs) offer an ideal platform to experimentally realize Dirac fermions. However, typically these exotic quasiparticles are located far away from the Fermi level, limiting the contribution of Dirac-like carriers to th e transport properties. Here we show that NiTe2 hosts both bulk Type-II Dirac points and topological surface states. The underlying mechanism is shared with other TMDs and based on the generic topological character of the Te p-orbital manifold. However, unique to NiTe2, a significant contribution of Ni d orbital states shifts the energy of the Type-II Dirac point close to the Fermi level. In addition, one of the topological surface states intersects the Fermi energy and exhibits a remarkably large spin splitting of 120 meV. Our results establish NiTe2 as an exciting candidate for next-generation spintronics devices.
Topological semimetals have recently attracted extensive research interests as host materials to condensed matter physics counterparts of Dirac and Weyl fermions originally proposed in high energy physics. These fermions with linear dispersions near the Dirac or Weyl points obey Lorentz invariance, and the chiral anomaly leads to novel quantum phenomena such as negative magnetoresistance. The Lorentz invariance is, however, not necessarily respected in condensed matter physics, and thus Lorentz-violating type-II Dirac fermions with strongly tilted cones can be realized in topological semimetals. Here, we report the first experimental evidence of type-II Dirac fermions in bulk stoichiometric PtTe$_2$ single crystal. Angle-resolved photoemission spectroscopy (ARPES) measurements and first-principles calculations reveal a pair of strongly tilted Dirac cones along the $Gamma$-A direction under the symmetry protection, confirming PtTe$_2$ as a type-II Dirac semimetal. The realization of type-II Dirac fermions opens a new door for exotic physical properties distinguished from type-I Dirac fermions in condensed matter materials.
Based on first-principles calculations and effective model analysis, a Dirac nodal-net semimetal state is recognized in AlB$_2$-type TiB$_2$ and ZrB$_2$ when spin-orbit coupling (SOC) is ignored. Taking TiB$_2$ as an example, there are several topolo gical excitations in this nodal-net structure including triple point, nexus, and nodal link, which are protected by coexistence of spatial-inversion symmetry and time reversal symmetry. This nodal-net state is remarkably different from that of IrF$_4$, which requires sublattice chiral symmetry. In addition, linearly and quadratically dispersed two-dimensional surface Dirac points are identified as having emerged on the B-terminated and Ti-terminated (001) surfaces of TiB$_2$ respectively, which are analogous to those of monolayer and bilayer graphene.
We study longitudinal electric and thermoelectric transport coefficients of Dirac fermions on a simple lattice model where tuning of a single parameter enables us to change the type of Dirac cones from type-I to type-II. We pay particular attention t o the behavior of the critical situation, i.e., the type-III Dirac cone. We find that the transport coefficients of the type-III Dirac fermions behave neither the limiting case of the type-I nor type-II. On one hand, the qualitative behaviors of the type-III case are similar to those of the type-I. On the other hand, the transport coefficients do not change monotonically upon increasing the tilting, namely, the largest thermoelectric response is obtained not for the type-III case but for the optically tilted type-I case. For the optimal case, the sizable transport coefficients are obtained, e.g., the dimensionless figure of merit being 0.18.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا