ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermoelectric transport of type-I, II, and III massless Dirac fermions in two-dimensional lattice model

438   0   0.0 ( 0 )
 نشر من قبل Tomonari Mizoguchi
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study longitudinal electric and thermoelectric transport coefficients of Dirac fermions on a simple lattice model where tuning of a single parameter enables us to change the type of Dirac cones from type-I to type-II. We pay particular attention to the behavior of the critical situation, i.e., the type-III Dirac cone. We find that the transport coefficients of the type-III Dirac fermions behave neither the limiting case of the type-I nor type-II. On one hand, the qualitative behaviors of the type-III case are similar to those of the type-I. On the other hand, the transport coefficients do not change monotonically upon increasing the tilting, namely, the largest thermoelectric response is obtained not for the type-III case but for the optically tilted type-I case. For the optimal case, the sizable transport coefficients are obtained, e.g., the dimensionless figure of merit being 0.18.



قيم البحث

اقرأ أيضاً

Large-gap quantum spin Hall insulators are promising materials for room-temperature applications based on Dirac fermions. Key to engineer the topologically non-trivial band ordering and sizable band gaps is strong spin-orbit interaction. Following Ka ne and Meles original suggestion, one approach is to synthesize monolayers of heavy atoms with honeycomb coordination accommodated on templates with hexagonal symmetry. Yet, in the majority of cases, this recipe leads to triangular lattices, typically hosting metals or trivial insulators. Here, we conceive and realize indenene, a triangular monolayer of indium on SiC exhibiting non-trivial valley physics driven by local spin-orbit coupling, which prevails over inversion-symmetry breaking terms. By means of tunneling microscopy of the 2D bulk we identify the quantum spin Hall phase of this triangular lattice and unveil how a hidden honeycomb connectivity emerges from interference patterns in Bloch $p_x pm ip_y$-derived wave functions.
213 - M. Horio , C. E. Matt , K. Kramer 2018
Relativistic massless Dirac fermions can be probed with high-energy physics experiments, but appear also as low-energy quasi-particle excitations in electronic band structures. In condensed matter systems, their massless nature can be protected by cr ystal symmetries. Classification of such symmetry-protected relativistic band degeneracies has been fruitful, although many of the predicted quasi-particles still await their experimental discovery. Here we reveal, using angle-resolved photoemission spectroscopy, the existence of two-dimensional type-II Dirac fermions in the high-temperature superconductor La$_{1.77}$Sr$_{0.23}$CuO$_4$. The Dirac point, constituting the crossing of $d_{x^2-y^2}$ and $d_{z^2}$ bands, is found approximately one electronvolt below the Fermi level ($E_mathrm{F}$) and is protected by mirror symmetry. If spin-orbit coupling is considered, the Dirac point degeneracy is lifted and the bands acquire a topologically non-trivial character. In certain nickelate systems, band structure calculations suggest that the same type-II Dirac fermions can be realised near $E_mathrm{F}$.
The phase transition between type-I and type-II Dirac semimetals will reveal a series of significant physical properties because of their completely distinct electronic, optical and magnetic properties. However, no mechanism and materials have been p roposed to realize the transition to date. Here, we propose that the transition can be realized in two-dimensional (2D) materials consisting of zigzag chains, by tuning external strains. The origination of the transition is that some orbital interactions in zigzag chains vary drastically with structural deformation, which changes dispersions of the corresponding bands. Two 2D nanosheets, monolayer PN and AsN, are searched out to confirm the mechanism by using first-principles calculations. They are intrinsic type-I or type-II Dirac materials, and transit to another type of Dirac materials by external strains. In addition, a possible routine is proposed to synthesize the new 2D structures.
356 - Jinyu Liu , Jin Hu , Huibo Cao 2016
Layered compounds AMnBi2 (A=Ca, Sr, Ba, or rare earth element) have been established as Dirac materials. Dirac electrons generated by the two-dimensional (2D) Bi square net in these materials are normally massive due to the presence of a spin-orbital coupling (SOC) induced gap at Dirac nodes. Here we report that the Sb square net in an isostructural compound BaMnSb2 can host nearly massless Dirac fermions. We observed strong Shubnikov-de Haas (SdH) oscillations in this material. From the analyses of the SdH oscillations, we find key signatures of Dirac fermions, including light effective mass (~0.052m0; m0, mass of free electron), high quantum mobility (1280 cm2V-1S-1) and a Pi Berry phase accumulated along cyclotron orbit. Compared with AMnBi2, BaMnSb2 also exhibits much more significant quasi two-dimensional (2D) electronic structure, with the out-of-plane transport showing nonmetallic conduction below 120K and the ratio of the out-of-plane and in-plane resistivity reaching ~670. Additionally, BaMnSb2 also exhibits an antiferromagnetic order with a weak ferromagnetic component. The combination of nearly massless Dirac fermions on quasi-2D planes with a magnetic order makes BaMnSb2 an intriguing platform for seeking novel exotic phenomena of massless Dirac electrons.
We study excitonic effects in two-dimensional massless Dirac fermions with Coulomb interactions by solving the ladder approximation to the Bethe-Salpeter equation. It is found that the general 4-leg vertex has a power law behavior with the exponent g oing from real to complex as the coupling constant is increased. This change of behavior is manifested in the antisymmetric response, which displays power law behavior at small wavevectors reminiscent of a critical state, and a change in this power law from real to complex that is accompanied by poles in the response function for finite size systems, suggesting a phase transition for strong enough interactions. The density-density response is also calculated, for which no critical behavior is found. We demonstrate that exciton correlations enhance the cusp in the irreducible polarizability at $2k_F$, leading to a strong increase in the amplitude of Friedel oscillations around a charged impurity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا