ترغب بنشر مسار تعليمي؟ اضغط هنا

Fermi-crossing Type-II Dirac fermions and topological surface states in NiTe2

317   0   0.0 ( 0 )
 نشر من قبل Saumya Mukherjee
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Transition-metal dichalcogenides (TMDs) offer an ideal platform to experimentally realize Dirac fermions. However, typically these exotic quasiparticles are located far away from the Fermi level, limiting the contribution of Dirac-like carriers to the transport properties. Here we show that NiTe2 hosts both bulk Type-II Dirac points and topological surface states. The underlying mechanism is shared with other TMDs and based on the generic topological character of the Te p-orbital manifold. However, unique to NiTe2, a significant contribution of Ni d orbital states shifts the energy of the Type-II Dirac point close to the Fermi level. In addition, one of the topological surface states intersects the Fermi energy and exhibits a remarkably large spin splitting of 120 meV. Our results establish NiTe2 as an exciting candidate for next-generation spintronics devices.



قيم البحث

اقرأ أيضاً

Here, we present a study on the Fermi-surface of the Dirac type-II semi-metallic candidate NiTe$_2$ via the temperature and angular dependence of the de Haas-van Alphen (dHvA) effect measured in single-crystals grown through Te flux. In contrast to i ts isostructural compounds like PtSe$_2$, band structure calculations predict NiTe$_2$ to display a tilted Dirac node very close to its Fermi level that is located along the $Gamma$ to A high symmetry direction within its first Brillouin zone (FBZ). The angular dependence of the dHvA frequencies is found to be in agreement with the first-principle calculations when the electronic bands are slightly shifted with respect to the Fermi level ($varepsilon_F$), and therefore provide support for the existence of a Dirac type-II node in NiTe$_2$. Nevertheless, we observed mild disagreements between experimental observations and density Functional theory calculations as, for example, nearly isotropic and light experimental effective masses. This indicates that the dispersion of the bands is not well captured by DFT. Despite the coexistence of Dirac-like fermions with topologically trivial carriers, samples of the highest quality display an anomalous and large, either linear or sub-linear magnetoresistivity. This suggests that Lorentz invariance breaking Dirac-like quasiparticles dominate the carrier transport in this compound.
257 - Tao Li , Ke Wang , Chunqiang Xu 2019
Very recently, NiTe2 has been reported to be a type II Dirac semimetal with Dirac nodes near the Fermi surface. Furthermore, it is unveiled that NiTe2 presents the Hall Effect, which is ascribed to orbital magnetoresistance. The physical properties b ehavior of NiTe2 under high pressure attracts us. In this paper, we investigate the electrical properties of polycrystalline NiTe2 by application of pressure ranging from 3.4GPa to 54.45Gpa. Superconductivity emerges at critical pressure 12GPa with a transition temperature of 3.7K, and Tc reaches its maximum, 6.4 K, at the pressure of 52.8GPa. Comparing with the superconductivity in MoP, we purposed the possibility of topological superconductivity in NiTe2. Two superconductivity transitions are observed with pressure increasing in single crystal.
We study the properties of a family of anti-pervoskite materials, which are topological crystalline insulators with an insulating bulk but a conducting surface. Using ab-initio DFT calculations, we investigate the bulk and surface topology and show t hat these materials exhibit type-I as well as type-II Dirac surface states protected by reflection symmetry. While type-I Dirac states give rise to closed circular Fermi surfaces, type-II Dirac surface states are characterized by open electron and hole pockets that touch each other. We find that the type-II Dirac states exhibit characteristic van-Hove singularities in their dispersion, which can serve as an experimental fingerprint. In addition, we study the response of the surface states to magnetic fields.
Dirac and Weyl semimetals are new discovered topological nontrivial materials with the linear band dispersions around the Dirac/Weyl points. When applying non-orthogonal electric current and magnetic field, an exotic phenomenon called chiral anomaly arises and negative longitudinal resistance can be detected. Recently, a new phenomenon named planer Hall effect (PHE) is considered to be another indication of chiral anomaly which has been observed in many topological semimetals. However, it still remains a question that is the PHE only attributed to chiral anomaly? Here we demonstrate the PHE in a new-discovered type-II Dirac semimetal NiTe2 by low temperature transport. However, after detailed analysis, we conclude that the PHE results from the trivial orbital magnetoresistance. This work reveals that PHE is not a sufficient condition of chiral anomaly and one need to take special care of other non-topological contribution in such studies.
Topological semimetals have attracted extensive research interests for realizing condensed matter physics counterparts of three-dimensional Dirac and Weyl fermions, which were originally introduced in high energy physics. Recently it has been propose d that type-II Dirac semimetal can host a new type of Dirac fermions which break Lorentz invariance and therefore does not have counterpart in high energy physics. Here we report the electronic structure of high quality PtSe$_2$ crystals to provide direct evidence for the existence of three-dimensional type-II Dirac fermions. A comparison of the crystal, vibrational and electronic structure to a sister compound PtTe$_2$ is also discussed. Our work provides an important platform for exploring the novel quantum phenomena in the PtSe$_2$ class of type-II Dirac semimetals.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا