ترغب بنشر مسار تعليمي؟ اضغط هنا

Large scale analysis of generalization error in learning using margin based classification methods

125   0   0.0 ( 0 )
 نشر من قبل Hanwen Huang
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Large-margin classifiers are popular methods for classification. We derive the asymptotic expression for the generalization error of a family of large-margin classifiers in the limit of both sample size $n$ and dimension $p$ going to $infty$ with fixed ratio $alpha=n/p$. This family covers a broad range of commonly used classifiers including support vector machine, distance weighted discrimination, and penalized logistic regression. Our result can be used to establish the phase transition boundary for the separability of two classes. We assume that the data are generated from a single multivariate Gaussian distribution with arbitrary covariance structure. We explore two special choices for the covariance matrix: spiked population model and two layer neural networks with random first layer weights. The method we used for deriving the closed-form expression is from statistical physics known as the replica method. Our asymptotic results match simulations already when $n,p$ are of the order of a few hundreds. For two layer neural networks, we reproduce the recently developed `double descent phenomenology for several classification models. We also discuss some statistical insights that can be drawn from these analysis.

قيم البحث

اقرأ أيضاً

83 - Hanwen Huang 2019
Margin-based classifiers have been popular in both machine learning and statistics for classification problems. Since a large number of classifiers are available, one natural question is which type of classifiers should be used given a particular cla ssification task. We aim to answering this question by investigating the asymptotic performance of a family of large-margin classifiers in situations where the data dimension $p$ and the sample $n$ are both large. This family covers a broad range of classifiers including support vector machine, distance weighted discrimination, penalized logistic regression, and large-margin unified machine as special cases. The asymptotic results are described by a set of nonlinear equations and we observe a close match of them with Monte Carlo simulation on finite data samples. Our analytical studies shed new light on how to select the best classifier among various classification methods as well as on how to choose the optimal tuning parameters for a given method.
Multi-omics data, that is, datasets containing different types of high-dimensional molecular variables (often in addition to classical clinical variables), are increasingly generated for the investigation of various diseases. Nevertheless, questions remain regarding the usefulness of multi-omics data for the prediction of disease outcomes such as survival time. It is also unclear which methods are most appropriate to derive such prediction models. We aim to give some answers to these questions by means of a large-scale benchmark study using real data. Different prediction methods from machine learning and statistics were applied on 18 multi-omics cancer datasets from the database The Cancer Genome Atlas, containing from 35 to 1,000 observations and from 60,000 to 100,000 variables. The considered outcome was the (censored) survival time. Twelve methods based on boosting, penalized regression and random forest were compared, comprising both methods that do and that do not take the group structure of the omics variables into account. The Kaplan-Meier estimate and a Cox model using only clinical variables were used as reference methods. The methods were compared using several repetitions of 5-fold cross-validation. Unos C-index and the integrated Brier-score served as performance metrics. The results show that, although multi-omics data can improve the prediction performance, this is not generally the case. Only the method block forest slightly outperformed the Cox model on average over all datasets. Taking into account the multi-omics structure improves the predictive performance and protects variables in low-dimensional groups - especially clinical variables - from not being included in the model. All analyses are reproducible using freely available R code.
120 - Yunbei Xu , Assaf Zeevi 2020
We study problem-dependent rates, i.e., generalization errors that scale near-optimally with the variance, the effective loss, or the gradient norms evaluated at the best hypothesis. We introduce a principled framework dubbed uniform localized conver gence, and characterize sharp problem-dependent rates for central statistical learning problems. From a methodological viewpoint, our framework resolves several fundamental limitations of existing uniform convergence and localization analysis approaches. It also provides improvements and some level of unification in the study of localized complexities, one-sided uniform inequalities, and sample-based iterative algorithms. In the so-called slow rate regime, we provides the first (moment-penalized) estimator that achieves the optimal variance-dependent rate for general rich classes; we also establish improved loss-dependent rate for standard empirical risk minimization. In the fast rate regime, we establish finite-sample problem-dependent bounds that are comparable to precise asymptotics. In addition, we show that iterative algorithms like gradient descent and first-order Expectation-Maximization can achieve optimal generalization error in several representative problems across the areas of non-convex learning, stochastic optimization, and learning with missing data.
294 - Pengzhan Jin , Lu Lu , Yifa Tang 2019
The accuracy of deep learning, i.e., deep neural networks, can be characterized by dividing the total error into three main types: approximation error, optimization error, and generalization error. Whereas there are some satisfactory answers to the p roblems of approximation and optimization, much less is known about the theory of generalization. Most existing theoretical works for generalization fail to explain the performance of neural networks in practice. To derive a meaningful bound, we study the generalization error of neural networks for classification problems in terms of data distribution and neural network smoothness. We introduce the cover complexity (CC) to measure the difficulty of learning a data set and the inverse of the modulus of continuity to quantify neural network smoothness. A quantitative bound for expected accuracy/error is derived by considering both the CC and neural network smoothness. Although most of the analysis is general and not specific to neural networks, we validate our theoretical assumptions and results numerically for neural networks by several data sets of images. The numerical results confirm that the expected error of trained networks scaled with the square root of the number of classes has a linear relationship with respect to the CC. We also observe a clear consistency between test loss and neural network smoothness during the training process. In addition, we demonstrate empirically that the neural network smoothness decreases when the network size increases whereas the smoothness is insensitive to training dataset size.
Compression techniques for deep neural network models are becoming very important for the efficient execution of high-performance deep learning systems on edge-computing devices. The concept of model compression is also important for analyzing the ge neralization error of deep learning, known as the compression-based error bound. However, there is still huge gap between a practically effective compression method and its rigorous background of statistical learning theory. To resolve this issue, we develop a new theoretical framework for model compression and propose a new pruning method called {it spectral pruning} based on this framework. We define the ``degrees of freedom to quantify the intrinsic dimensionality of a model by using the eigenvalue distribution of the covariance matrix across the internal nodes and show that the compression ability is essentially controlled by this quantity. Moreover, we present a sharp generalization error bound of the compressed model and characterize the bias--variance tradeoff induced by the compression procedure. We apply our method to several datasets to justify our theoretical analyses and show the superiority of the the proposed method.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا