ترغب بنشر مسار تعليمي؟ اضغط هنا

Large-scale benchmark study of survival prediction methods using multi-omics data

90   0   0.0 ( 0 )
 نشر من قبل Moritz Herrmann
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Multi-omics data, that is, datasets containing different types of high-dimensional molecular variables (often in addition to classical clinical variables), are increasingly generated for the investigation of various diseases. Nevertheless, questions remain regarding the usefulness of multi-omics data for the prediction of disease outcomes such as survival time. It is also unclear which methods are most appropriate to derive such prediction models. We aim to give some answers to these questions by means of a large-scale benchmark study using real data. Different prediction methods from machine learning and statistics were applied on 18 multi-omics cancer datasets from the database The Cancer Genome Atlas, containing from 35 to 1,000 observations and from 60,000 to 100,000 variables. The considered outcome was the (censored) survival time. Twelve methods based on boosting, penalized regression and random forest were compared, comprising both methods that do and that do not take the group structure of the omics variables into account. The Kaplan-Meier estimate and a Cox model using only clinical variables were used as reference methods. The methods were compared using several repetitions of 5-fold cross-validation. Unos C-index and the integrated Brier-score served as performance metrics. The results show that, although multi-omics data can improve the prediction performance, this is not generally the case. Only the method block forest slightly outperformed the Cox model on average over all datasets. Taking into account the multi-omics structure improves the predictive performance and protects variables in low-dimensional groups - especially clinical variables - from not being included in the model. All analyses are reproducible using freely available R code.



قيم البحث

اقرأ أيضاً

116 - Lana X Garmire 2020
Genomics, especially multi-omics, has made precision medicine feasible. The completion and publicly accessible multi-omics resource with clinical outcome, such as The Cancer Genome Atlas (TCGA) is a great test bed for developing computational methods that integrate multi-omics data to predict patient cancer phenotypes. We have been utilizing TCGA multi-omics data to predict cancer patient survival, using a variety of approaches, including prior-biological knowledge (such as pathways), and more recently, deep-learning methods. Over time, we have developed methods such as Cox-nnet, DeepProg, and two-stage Cox-nnet, to address the challenges due to multi-omics and multi-modality. Despite the limited sample size (hundreds to thousands) in the training datasets as well as the heterogeneity nature of human populations, these methods have shown significance and robustness at predicting patient survival in independent population cohorts. In the following, we would describe in detail these methodologies, the modeling results, and important biological insights revealed by these methods.
Large-margin classifiers are popular methods for classification. We derive the asymptotic expression for the generalization error of a family of large-margin classifiers in the limit of both sample size $n$ and dimension $p$ going to $infty$ with fix ed ratio $alpha=n/p$. This family covers a broad range of commonly used classifiers including support vector machine, distance weighted discrimination, and penalized logistic regression. Our result can be used to establish the phase transition boundary for the separability of two classes. We assume that the data are generated from a single multivariate Gaussian distribution with arbitrary covariance structure. We explore two special choices for the covariance matrix: spiked population model and two layer neural networks with random first layer weights. The method we used for deriving the closed-form expression is from statistical physics known as the replica method. Our asymptotic results match simulations already when $n,p$ are of the order of a few hundreds. For two layer neural networks, we reproduce the recently developed `double descent phenomenology for several classification models. We also discuss some statistical insights that can be drawn from these analysis.
343 - Amine Amor 2021
Combining different modalities of data from human tissues has been critical in advancing biomedical research and personalised medical care. In this study, we leverage a graph embedding model (i.e VGAE) to perform link prediction on tissue-specific Ge ne-Gene Interaction (GGI) networks. Through ablation experiments, we prove that the combination of multiple biological modalities (i.e multi-omics) leads to powerful embeddings and better link prediction performances. Our evaluation shows that the integration of gene methylation profiles and RNA-sequencing data significantly improves the link prediction performance. Overall, the combination of RNA-sequencing and gene methylation data leads to a link prediction accuracy of 71% on GGI networks. By harnessing graph representation learning on multi-omics data, our work brings novel insights to the current literature on multi-omics integration in bioinformatics.
Time series data in the retail world are particularly rich in terms of dimensionality, and these dimensions can be aggregated in groups or hierarchies. Valuable information is nested in these complex structures, which helps to predict the aggregated time series data. From a portfolio of brands under HUUBs monitoring, we selected two to explore their sales behaviour, leveraging the grouping properties of their product structure. Using statistical models, namely SARIMA, to forecast each level of the hierarchy, an optimal combination approach was used to generate more consistent forecasts in the higher levels. Our results show that the proposed methods can indeed capture nested information in the more granular series, helping to improve the forecast accuracy of the aggregated series. The Weighted Least Squares (WLS) method surpasses all other methods proposed in the study, including the Minimum Trace (MinT) reconciliation.
Generative adversarial networks (GAN) are a powerful subclass of generative models. Despite a very rich research activity leading to numerous interesting GAN algorithms, it is still very hard to assess which algorithm(s) perform better than others. W e conduct a neutral, multi-faceted large-scale empirical study on state-of-the art models and evaluation measures. We find that most models can reach similar scores with enough hyperparameter optimization and random restarts. This suggests that improvements can arise from a higher computational budget and tuning more than fundamental algorithmic changes. To overcome some limitations of the current metrics, we also propose several data sets on which precision and recall can be computed. Our experimental results suggest that future GAN research should be based on more systematic and objective evaluation procedures. Finally, we did not find evidence that any of the tested algorithms consistently outperforms the non-saturating GAN introduced in cite{goodfellow2014generative}.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا