ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimal Feedback Law Recovery by Gradient-Augmented Sparse Polynomial Regression

59   0   0.0 ( 0 )
 نشر من قبل Dante Kalise
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A sparse regression approach for the computation of high-dimensional optimal feedback laws arising in deterministic nonlinear control is proposed. The approach exploits the control-theoretical link between Hamilton-Jacobi-Bellman PDEs characterizing the value function of the optimal control problems, and first-order optimality conditions via Pontryagins Maximum Principle. The latter is used as a representation formula to recover the value function and its gradient at arbitrary points in the space-time domain through the solution of a two-point boundary value problem. After generating a dataset consisting of different state-value pairs, a hyperbolic cross polynomial model for the value function is fitted using a LASSO regression. An extended set of low and high-dimensional numerical tests in nonlinear optimal control reveal that enriching the dataset with gradient information reduces the number of training samples, and that the sparse polynomial regression consistently yields a feedback law of lower complexity.

قيم البحث

اقرأ أيضاً

58 - Cedric Josz 2017
We show that the sparse polynomial interpolation problem reduces to a discrete super-resolution problem on the $n$-dimensional torus. Therefore the semidefinite programming approach initiated by Cand`es & Fernandez-Granda cite{candes_towards_2014} in the univariate case can be applied. We extend their result to the multivariate case, i.e., we show that exact recovery is guaranteed provided that a geometric spacing condition on the supports holds and the number of evaluations are sufficiently many (but not many). It also turns out that the sparse recovery LP-formulation of $ell_1$-norm minimization is also guaranteed to provide exact recovery {it provided that} theevaluations are made in a certain manner and even though the Restricted Isometry Property for exact recovery is not satisfied. (A naive sparse recovery LP-approach does not offer such a guarantee.) Finally we also describe the algebraic Prony method for sparse interpolation, which also recovers the exact decomposition but from less point evaluations and with no geometric spacing condition. We provide two sets of numerical experiments, one in which the super-resolution technique and Pronys method seem to cope equally well with noise, and another in which the super-resolution technique seems to cope with noise better than Pronys method, at the cost of an extra computational burden (i.e. a semidefinite optimization).
A supervised learning approach for the solution of large-scale nonlinear stabilization problems is presented. A stabilizing feedback law is trained from a dataset generated from State-dependent Riccati Equation solves. The training phase is enriched by the use gradient information in the loss function, which is weighted through the use of hyperparameters. High-dimensional nonlinear stabilization tests demonstrate that real-time sequential large-scale Algebraic Riccati Equation solves can be substituted by a suitably trained feedforward neural network.
In this paper, we will generate a convex iterative FP thresholding algorithm to solve the problem $(FP^{lambda}_{a})$. Two schemes of convex iterative FP thresholding algorithms are generated. One is convex iterative FP thresholding algorithm-Scheme 1 and the other is convex iterative FP thresholding algorithm-Scheme 2. A global convergence theorem is proved for the convex iterative FP thresholding algorithm-Scheme 1. Under an adaptive rule, the convex iterative FP thresholding algorithm-Scheme 2 will be adaptive both for the choice of the regularized parameter $lambda$ and parameter $a$. These are the advantages for our two schemes of convex iterative FP thresholding algorithm compared with our previous proposed two schemes of iterative FP thresholding algorithm. At last, we provide a series of numerical simulations to test the performance of the convex iterative FP thresholding algorithm-Scheme 2, and the simulation results show that our convex iterative FP thresholding algorithm-Scheme 2 performs very well in recovering a sparse signal.
96 - Vasileios Nakos 2019
In the sparse polynomial multiplication problem, one is asked to multiply two sparse polynomials f and g in time that is proportional to the size of the input plus the size of the output. The polynomials are given via lists of their coefficients F an d G, respectively. Cole and Hariharan (STOC 02) have given a nearly optimal algorithm when the coefficients are positive, and Arnold and Roche (ISSAC 15) devised an algorithm running in time proportional to the structural sparsity of the product, i.e. the set supp(F)+supp(G). The latter algorithm is particularly efficient when there not too many cancellations of coefficients in the product. In this work we give a clean, nearly optimal algorithm for the sparse polynomial multiplication problem.
We present a probabilistic algorithm to compute the product of two univariate sparse polynomials over a field with a number of bit operations that is quasi-linear in the size of the input and the output. Our algorithm works for any field of character istic zero or larger than the degree. We mainly rely on sparse interpolation and on a new algorithm for verifying a sparse product that has also a quasi-linear time complexity. Using Kronecker substitution techniques we extend our result to the multivariate case.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا