ترغب بنشر مسار تعليمي؟ اضغط هنا

Gradient-augmented Supervised Learning of Optimal Feedback Laws Using State-dependent Riccati Equations

88   0   0.0 ( 0 )
 نشر من قبل Dante Kalise
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

A supervised learning approach for the solution of large-scale nonlinear stabilization problems is presented. A stabilizing feedback law is trained from a dataset generated from State-dependent Riccati Equation solves. The training phase is enriched by the use gradient information in the loss function, which is weighted through the use of hyperparameters. High-dimensional nonlinear stabilization tests demonstrate that real-time sequential large-scale Algebraic Riccati Equation solves can be substituted by a suitably trained feedforward neural network.



قيم البحث

اقرأ أيضاً

The synthesis of suboptimal feedback laws for controlling nonlinear dynamics arising from semi-discretized PDEs is studied. An approach based on the State-dependent Riccati Equation (SDRE) is presented for H2 and Hinf control problems. Depending on t he nonlinearity and the dimension of the resulting problem, offline, online, and hybrid offline-online alternatives to the SDRE synthesis are proposed. The hybrid offline-online SDRE method reduces to the sequential solution of Lyapunov equations, effectively enabling the computation of suboptimal feedback controls for two-dimensional PDEs. Numerical tests for the Sine-Gordon, degenerate Zeldovich, and viscous Burgers PDEs are presented, providing a thorough experimental assessment of the proposed methodology.
A sparse regression approach for the computation of high-dimensional optimal feedback laws arising in deterministic nonlinear control is proposed. The approach exploits the control-theoretical link between Hamilton-Jacobi-Bellman PDEs characterizing the value function of the optimal control problems, and first-order optimality conditions via Pontryagins Maximum Principle. The latter is used as a representation formula to recover the value function and its gradient at arbitrary points in the space-time domain through the solution of a two-point boundary value problem. After generating a dataset consisting of different state-value pairs, a hyperbolic cross polynomial model for the value function is fitted using a LASSO regression. An extended set of low and high-dimensional numerical tests in nonlinear optimal control reveal that enriching the dataset with gradient information reduces the number of training samples, and that the sparse polynomial regression consistently yields a feedback law of lower complexity.
In this paper we propose a new computational method for designing optimal regulators for high-dimensional nonlinear systems. The proposed approach leverages physics-informed machine learning to solve high-dimensional Hamilton-Jacobi-Bellman equations arising in optimal feedback control. Concretely, we augment linear quadratic regulators with neural networks to handle nonlinearities. We train the augmented models on data generated without discretizing the state space, enabling application to high-dimensional problems. We use the proposed method to design a candidate optimal regulator for an unstable Burgers equation, and through this example, demonstrate improved robustness and accuracy compared to existing neural network formulations.
Recent research has shown that supervised learning can be an effective tool for designing optimal feedback controllers for high-dimensional nonlinear dynamic systems. But the behavior of these neural network (NN) controllers is still not well underst ood. In this paper we use numerical simulations to demonstrate that typical test accuracy metrics do not effectively capture the ability of an NN controller to stabilize a system. In particular, some NNs with high test accuracy can fail to stabilize the dynamics. To address this we propose two NN architectures which locally approximate a linear quadratic regulator (LQR). Numerical simulations confirm our intuition that the proposed architectures reliably produce stabilizing feedback controllers without sacrificing performance. In addition, we introduce a preliminary theoretical result describing some stability properties of such NN-controlled systems.
Stabilizing feedback operators are presented which depend only on the orthogonal projection of the state onto the finite-dimensional control space. A class of monotone feedback operators mapping the finite-dimensional control space into itself is con sidered. The special case of the scaled identity operator is included. Conditions are given on the set of actuators and on the magnitude of the monotonicity, which guarantee the semiglobal stabilizing property of the feedback for a class semilinear parabolic-like equations. Subsequently an optimal feedback control minimizing the quadratic energy cost is computed by a deep neural network, exploiting the fact that the feedback depends only on a finite dimensional component of the state. Numerical simulations demonstrate the stabilizing performance of explicitly scaled orthogonal projection feedbacks, and of deep neural network feedbacks.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا