ترغب بنشر مسار تعليمي؟ اضغط هنا

Nearly Optimal Sparse Polynomial Multiplication

97   0   0.0 ( 0 )
 نشر من قبل Vasileios Nakos
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Vasileios Nakos




اسأل ChatGPT حول البحث

In the sparse polynomial multiplication problem, one is asked to multiply two sparse polynomials f and g in time that is proportional to the size of the input plus the size of the output. The polynomials are given via lists of their coefficients F and G, respectively. Cole and Hariharan (STOC 02) have given a nearly optimal algorithm when the coefficients are positive, and Arnold and Roche (ISSAC 15) devised an algorithm running in time proportional to the structural sparsity of the product, i.e. the set supp(F)+supp(G). The latter algorithm is particularly efficient when there not too many cancellations of coefficients in the product. In this work we give a clean, nearly optimal algorithm for the sparse polynomial multiplication problem.



قيم البحث

اقرأ أيضاً

We present a probabilistic algorithm to compute the product of two univariate sparse polynomials over a field with a number of bit operations that is quasi-linear in the size of the input and the output. Our algorithm works for any field of character istic zero or larger than the degree. We mainly rely on sparse interpolation and on a new algorithm for verifying a sparse product that has also a quasi-linear time complexity. Using Kronecker substitution techniques we extend our result to the multivariate case.
We present randomized algorithms to compute the sumset (Minkowski sum) of two integer sets, and to multiply two univariate integer polynomials given by sparse representations. Our algorithm for sumset has cost softly linear in the combined size of th e inputs and output. This is used as part of our sparse multiplication algorithm, whose cost is softly linear in the combined size of the inputs, output, and the sumset of the supports of the inputs. As a subroutine, we present a new method for computing the coefficients of a sparse polynomial, given a set containing its support. Our multiplication algorithm extends to multivariate Laurent polynomials over finite fields and rational numbers. Our techniques are based on sparse interpolation algorithms and results from analytic number theory.
Given a straight-line program whose output is a polynomial function of the inputs, we present a new algorithm to compute a concise representation of that unknown function. Our algorithm can handle any case where the unknown function is a multivariate polynomial, with coefficients in an arbitrary finite field, and with a reasonable number of nonzero terms but possibly very large degree. It is competitive with previously known sparse interpolation algorithms that work over an arbitrary finite field, and provides an improvement when there are a large number of variables.
We propose a new algorithm for multiplying dense polynomials with integer coefficients in a parallel fashion, targeting multi-core processor architectures. Complexity estimates and experimental comparisons demonstrate the advantages of this new approach.
The polynomial multiplication problem has attracted considerable attention since the early days of computer algebra, and several algorithms have been designed to achieve the best possible time complexity. More recently, efforts have been made to improve the space complexity, developing modifi
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا