ﻻ يوجد ملخص باللغة العربية
Aspects of the low energy physics of certain Jackiw-Teitelboim gravity and supergravity theories are explored, using their recently presented non-perturbative description in terms of minimal string models. This regime necessarily involves non-perturbative phenomena, and the inclusion of wormhole geometries connecting multiple copies of the nearly AdS$_2$ boundary in the computation of ensemble averages of key quantities. A new replica-scaling limit is considered, combining the replica method and double scaling with the low energy limit. Using it, the leading free energy, entropy, and specific heat are explored for various examples. Two models of particular note are the JT supergravity theory defined as a (1,2) Altland-Zirnbauer matrix ensemble by Stanford and Witten, and the Saad-Shenker-Stanford matrix model of ordinary JT gravity (non-perturbatively improved at low energy). The full models have a finite non-vanishing spectral density at zero energy. The replica-scaling construction suggests for them a low temperature entropy and specific heat that are linear in temperature.
Some recently proposed definitions of Jackiw-Teitelboim gravity and supergravities in terms of combinations of minimal string models are explored, with a focus on physics beyond the perturbative expansion in spacetime topology. While this formally in
The quenched free energy, $F_Q(T){=}{-}Tlangle ln Z(T)rangle$, of various JT gravity and supergravity theories is explored, taking into account the key non-perturbative physics that is accessible using their matrix model formulations. The leading low
It is proposed that a family of Jackiw-Teitelboim supergravites, recently discussed in connection with matrix models by Stanford and Witten, can be given a complete definition, to all orders in the topological expansion and beyond, in terms of a spec
We study a Jackiw-Teitelboim (JT) supergravity theory, defined as an Euclidean path integral over orientable supermanifolds with constant negative curvature, that was argued by Stanford and Witten to be captured by a random matrix model in the $bolds
We study a series of powerful correspondences among new multi-gravity extensions of the Jackiw-Teitelboim model, multi-SYK models and multi-Schwarzian quantum mechanics, in the $rm{(A)dS_{2}/CFT}$ arena. Deploying a $BF$-like formulation of the model