ﻻ يوجد ملخص باللغة العربية
The recently developed technique combining the weak coupling limit with the Floquet formalism is applied to a model of two-level atom driven by a strong laser field and weakly coupled to heat baths. Firstly, the case of a single electromagnetic bath at zero temperature is discussed and the formula for resonance fluorescence is derived. The expression describes the well-known Mollow triplet, but its details differ from the standard ones based on additional simplifying assumptions. The second example describes the case of two thermal reservoirs: an electromagnetic one at finite temperature and the second dephasing one, which can be realized as a phononic or buffer gas reservoir. It is shown using the developed thermodynamical approach that the latter system can work in two regimes depending on the detuning sign: a heat pump transporting heat from the dephasing reservoir to an electromagnetic bath or can heat both, always at the expense of work supplied by the laser field.
We present a detailed microscopic derivation for a non-Markovian master equation for a driven two-state system interacting with a general structured reservoir. The master equation is derived using the time-convolutionless projection operator techniqu
In this paper we present a method to derive an exact master equation for a bosonic system coupled to a set of other bosonic systems, which plays the role of the reservoir, under the strong coupling regime, i.e., without resorting to either the rotati
For a bosonic (fermionic) open system in a bath with many bosons (fermions) modes, we derive the exact non-Markovian master equation in which the memory effect of the bath is reflected in the time dependent decay rates. In this approach, the reduced
We derive the stochastic equations and consider the non-Markovian dynamics of a system of multiple two-level atoms in a common quantum field. We make only the dipole approximation for the atoms and assume weak atom-field interactions. From these assu
We study non-Markovian dynamics of a two level atom using pseudomode method. Because of the memory effect of non-Markovian dynamics, the atom receives back information and excited energy from the reservoir at a later time, which causes more complicat