ﻻ يوجد ملخص باللغة العربية
Maximum simulated likelihood estimation of mixed multinomial logit (MMNL) or probit models requires evaluation of a multidimensional integral. Quasi-Monte Carlo (QMC) methods such as shuffled and scrambled Halton sequences and modified Latin hypercube sampling (MLHS) are workhorse methods for integral approximation. A few earlier studies explored the potential of sparse grid quadrature (SGQ), but this approximation suffers from negative weights. As an alternative to QMC and SGQ, we looked into the recently developed designed quadrature (DQ) method. DQ requires fewer nodes to get the same level of accuracy as of QMC and SGQ, is as easy to implement, ensures positivity of weights, and can be created on any general polynomial spaces. We benchmarked DQ against QMC in a Monte Carlo study under different data generating processes with a varying number of random parameters (3, 5, and 10) and variance-covariance structures (diagonal and full). Whereas DQ significantly outperformed QMC in the diagonal variance-covariance scenario, it could also achieve a better model fit and recover true parameters with fewer nodes (i.e., relatively lower computation time) in the full variance-covariance scenario. Finally, we evaluated the performance of DQ in a case study to understand preferences for mobility-on-demand services in New York City. In estimating MMNL with five random parameters, DQ achieved better fit and statistical significance of parameters with just 200 nodes as compared to 1000 QMC draws, making DQ around five times faster than QMC methods.
A maximum likelihood methodology for a general class of models is presented, using an approximate Bayesian computation (ABC) approach. The typical target of ABC methods are models with intractable likelihoods, and we combine an ABC-MCMC sampler with
Mixture models are regularly used in density estimation applications, but the problem of estimating the mixing distribution remains a challenge. Nonparametric maximum likelihood produce estimates of the mixing distribution that are discrete, and thes
In order to learn the complex features of large spatio-temporal data, models with large parameter sets are often required. However, estimating a large number of parameters is often infeasible due to the computational and memory costs of maximum likel
Using classical simulated annealing to maximise a function $psi$ defined on a subset of $R^d$, the probability $p(psi(theta_n)leq psi_{max}-epsilon)$ tends to zero at a logarithmic rate as $n$ increases; here $theta_n$ is the state in the $n$-th stag
We propose an efficient algorithm for approximate computation of the profile maximum likelihood (PML), a variant of maximum likelihood maximizing the probability of observing a sufficient statistic rather than the empirical sample. The PML has appeal