ﻻ يوجد ملخص باللغة العربية
In order to learn the complex features of large spatio-temporal data, models with large parameter sets are often required. However, estimating a large number of parameters is often infeasible due to the computational and memory costs of maximum likelihood estimation (MLE). We introduce the class of marginally parametrized (MP) models, where inference can be performed efficiently with a sequence of marginal (estimated) likelihood functions via stepwise maximum likelihood estimation (SMLE). We provide the conditions under which the stepwise estimators are consistent, and we prove that this class of models includes the diagonal vector autoregressive moving average model. We demonstrate that the parameters of this model can be obtained at least three orders of magnitude faster using SMLE compared to MLE, with only a small loss in statistical efficiency. We apply an MP model to a spatio-temporal global climate data set (in order to learn complex features of interest to climate scientists) consisting of over five million data points, and we demonstrate how estimation can be performed in less than an hour on a laptop.
We consider an equivariant approach imposing data-driven bounds for the variances to avoid singular and spurious solutions in maximum likelihood (ML) estimation of clusterwise linear regression models. We investigate its use in the choice of the numb
Mixture models are regularly used in density estimation applications, but the problem of estimating the mixing distribution remains a challenge. Nonparametric maximum likelihood produce estimates of the mixing distribution that are discrete, and thes
Maximum simulated likelihood estimation of mixed multinomial logit (MMNL) or probit models requires evaluation of a multidimensional integral. Quasi-Monte Carlo (QMC) methods such as shuffled and scrambled Halton sequences and modified Latin hypercub
We introduce the package GraphicalModelsMLE for computing the maximum likelihood estimator (MLE) of a Gaussian graphical model in the computer algebra system Macaulay2. The package allows to compute for the class of loopless mixed graphs. Additional
In this article, we discuss the composite likelihood estimation of sparse Gaussian graphical models. When there are symmetry constraints on the concentration matrix or partial correlation matrix, the likelihood estimation can be computational intensi