ترغب بنشر مسار تعليمي؟ اضغط هنا

Adaptive Task Sampling for Meta-Learning

93   0   0.0 ( 0 )
 نشر من قبل Chenghao Liu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Meta-learning methods have been extensively studied and applied in computer vision, especially for few-shot classification tasks. The key idea of meta-learning for few-shot classification is to mimic the few-shot situations faced at test time by randomly sampling classes in meta-training data to construct few-shot tasks for episodic training. While a rich line of work focuses solely on how to extract meta-knowledge across tasks, we exploit the complementary problem on how to generate informative tasks. We argue that the randomly sampled tasks could be sub-optimal and uninformative (e.g., the task of classifying dog from laptop is often trivial) to the meta-learner. In this paper, we propose an adaptive task sampling method to improve the generalization performance. Unlike instance based sampling, task based sampling is much more challenging due to the implicit definition of the task in each episode. Therefore, we accordingly propose a greedy class-pair based sampling method, which selects difficult tasks according to class-pair potentials. We evaluate our adaptive task sampling method on two few-shot classification benchmarks, and it achieves consistent improvements across different feature backbones, meta-learning algorithms and datasets.



قيم البحث

اقرأ أيضاً

186 - Zhe Liu , Yun Li , Lina Yao 2021
Zero-shot learning (ZSL) refers to the problem of learning to classify instances from the novel classes (unseen) that are absent in the training set (seen). Most ZSL methods infer the correlation between visual features and attributes to train the cl assifier for unseen classes. However, such models may have a strong bias towards seen classes during training. Meta-learning has been introduced to mitigate the basis, but meta-ZSL methods are inapplicable when tasks used for training are sampled from diverse distributions. In this regard, we propose a novel Task-aligned Generative Meta-learning model for Zero-shot learning (TGMZ). TGMZ mitigates the potentially biased training and enables meta-ZSL to accommodate real-world datasets containing diverse distributions. TGMZ incorporates an attribute-conditioned task-wise distribution alignment network that projects tasks into a unified distribution to deliver an unbiased model. Our comparisons with state-of-the-art algorithms show the improvements of 2.1%, 3.0%, 2.5%, and 7.6% achieved by TGMZ on AWA1, AWA2, CUB, and aPY datasets, respectively. TGMZ also outperforms competitors by 3.6% in generalized zero-shot learning (GZSL) setting and 7.9% in our proposed fusion-ZSL setting.
MixUp is an effective data augmentation method to regularize deep neural networks via random linear interpolations between pairs of samples and their labels. It plays an important role in model regularization, semi-supervised learning and domain adap tion. However, despite its empirical success, its deficiency of randomly mixing samples has poorly been studied. Since deep networks are capable of memorizing the entire dataset, the corrupted samples generated by vanilla MixUp with a badly chosen interpolation policy will degrade the performance of networks. To overcome the underfitting by corrupted samples, inspired by Meta-learning (learning to learn), we propose a novel technique of learning to mixup in this work, namely, MetaMixUp. Unlike the vanilla MixUp that samples interpolation policy from a predefined distribution, this paper introduces a meta-learning based online optimization approach to dynamically learn the interpolation policy in a data-adaptive way. The validation set performance via meta-learning captures the underfitting issue, which provides more information to refine interpolation policy. Furthermore, we adapt our method for pseudo-label based semisupervised learning (SSL) along with a refined pseudo-labeling strategy. In our experiments, our method achieves better performance than vanilla MixUp and its variants under supervised learning configuration. In particular, extensive experiments show that our MetaMixUp adapted SSL greatly outperforms MixUp and many state-of-the-art methods on CIFAR-10 and SVHN benchmarks under SSL configuration.
The performance of many medical image analysis tasks are strongly associated with image data quality. When developing modern deep learning algorithms, rather than relying on subjective (human-based) image quality assessment (IQA), task amenability po tentially provides an objective measure of task-specific image quality. To predict task amenability, an IQA agent is trained using reinforcement learning (RL) with a simultaneously optimised task predictor, such as a classification or segmentation neural network. In this work, we develop transfer learning or adaptation strategies to increase the adaptability of both the IQA agent and the task predictor so that they are less dependent on high-quality, expert-labelled training data. The proposed transfer learning strategy re-formulates the original RL problem for task amenability in a meta-reinforcement learning (meta-RL) framework. The resulting algorithm facilitates efficient adaptation of the agent to different definitions of image quality, each with its own Markov decision process environment including different images, labels and an adaptable task predictor. Our work demonstrates that the IQA agents pre-trained on non-expert task labels can be adapted to predict task amenability as defined by expert task labels, using only a small set of expert labels. Using 6644 clinical ultrasound images from 249 prostate cancer patients, our results for image classification and segmentation tasks show that the proposed IQA method can be adapted using data with as few as respective 19.7% and 29.6% expert-reviewed consensus labels and still achieve comparable IQA and task performance, which would otherwise require a training dataset with 100% expert labels.
While neural networks are powerful function approximators, they suffer from catastrophic forgetting when the data distribution is not stationary. One particular formalism that studies learning under non-stationary distribution is provided by continua l learning, where the non-stationarity is imposed by a sequence of distinct tasks. Most methods in this space assume, however, the knowledge of task boundaries, and focus on alleviating catastrophic forgetting. In this work, we depart from this view and move the focus towards faster remembering -- i.e measuring how quickly the network recovers performance rather than measuring the networks performance without any adaptation. We argue that in many settings this can be more effective and that it opens the door to combining meta-learning and continual learning techniques, leveraging their complementary advantages. We propose a framework specific for the scenario where no information about task boundaries or task identity is given. It relies on a separation of concerns into what task is being solved and how the task should be solved. This framework is implemented by differentiating task specific parameters from task agnostic parameters, where the latter are optimized in a continual meta learning fashion, without access to multiple tasks at the same time. We showcase this framework in a supervised learning scenario and discuss the implication of the proposed formalism.
Meta-learning has been the most common framework for few-shot learning in recent years. It learns the model from collections of few-shot classification tasks, which is believed to have a key advantage of making the training objective consistent with the testing objective. However, some recent works report that by training for whole-classification, i.e. classification on the whole label-set, it can get comparable or even better embedding than many meta-learning algorithms. The edge between these two lines of works has yet been underexplored, and the effectiveness of meta-learning in few-shot learning remains unclear. In this paper, we explore a simple process: meta-learning over a whole-classification pre-trained model on its evaluation metric. We observe this simple method achieves competitive performance to state-of-the-art methods on standard benchmarks. Our further analysis shed some light on understanding the trade-offs between the meta-learning objective and the whole-classification objective in few-shot learning.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا