ﻻ يوجد ملخص باللغة العربية
Zero-shot learning (ZSL) refers to the problem of learning to classify instances from the novel classes (unseen) that are absent in the training set (seen). Most ZSL methods infer the correlation between visual features and attributes to train the classifier for unseen classes. However, such models may have a strong bias towards seen classes during training. Meta-learning has been introduced to mitigate the basis, but meta-ZSL methods are inapplicable when tasks used for training are sampled from diverse distributions. In this regard, we propose a novel Task-aligned Generative Meta-learning model for Zero-shot learning (TGMZ). TGMZ mitigates the potentially biased training and enables meta-ZSL to accommodate real-world datasets containing diverse distributions. TGMZ incorporates an attribute-conditioned task-wise distribution alignment network that projects tasks into a unified distribution to deliver an unbiased model. Our comparisons with state-of-the-art algorithms show the improvements of 2.1%, 3.0%, 2.5%, and 7.6% achieved by TGMZ on AWA1, AWA2, CUB, and aPY datasets, respectively. TGMZ also outperforms competitors by 3.6% in generalized zero-shot learning (GZSL) setting and 7.9% in our proposed fusion-ZSL setting.
Zero-shot learning (ZSL) aims to transfer knowledge from seen classes to semantically related unseen classes, which are absent during training. The promising strategies for ZSL are to synthesize visual features of unseen classes conditioned on semant
Meta-learning has been the most common framework for few-shot learning in recent years. It learns the model from collections of few-shot classification tasks, which is believed to have a key advantage of making the training objective consistent with
Meta-learning methods have been extensively studied and applied in computer vision, especially for few-shot classification tasks. The key idea of meta-learning for few-shot classification is to mimic the few-shot situations faced at test time by rand
Contemporary state-of-the-art approaches to Zero-Shot Learning (ZSL) train generative nets to synthesize examples conditioned on the provided metadata. Thereafter, classifiers are trained on these synthetic data in a supervised manner. In this work,
Zero-shot learning (ZSL) aims at understanding unseen categories with no training examples from class-level descriptions. To improve the discriminative power of ZSL, we model the visual learning process of unseen categories with inspiration from the