ﻻ يوجد ملخص باللغة العربية
An unconventional magnet may be mapped onto a simple ferromagnet by the existence of a high-symmetry point. Knowledge of conventional ferromagnetic systems may then be carried over to provide insight into more complex orders. Here we demonstrate how an unsupervised and interpretable machine-learning approach can be used to search for potential high-symmetry points in unconventional magnets without any prior knowledge of the system. The method is applied to the classical Heisenberg-Kitaev model on a honeycomb lattice, where our machine learns the transformations that manifest its hidden $O(3)$ symmetry, without using data of these high-symmetry points. Moreover, we clarify that, in contrast to the stripy and zigzag orders, a set of $D_2$ and $D_{2h}$ ordering matrices provides a more complete description of the magnetization in the Heisenberg-Kitaev model. In addition, our machine also learns the local constraints at the phase boundaries, which manifest a subdimensional symmetry. This paper highlights the importance of explicit order parameters to many-body spin systems and the property of interpretability for the physical application of machine-learning techniques.
Magnetism in recently discovered van der Waals materials has opened new avenues in the study of fundamental spin interactions in truly two-dimensions. A paramount question is what effect higher-order interactions beyond bilinear Heisenberg exchange h
Accurate simulations of isotropic permanent magnets require to take the magnetization process into account and consider the anisotropic, nonlinear, and hysteretic material behaviour near the saturation configuration. An efficient method for the solut
We analyze the interference between tunneling paths that occurs for a spin system with both fourth-order and second-order transverse anisotropy. Using an instanton approach, we find that as the strength of the second-order transverse anisotropy is in
High-temperature superconductivity and a wide variety of exotic superconducting states discovered in FeSe-based materials have been at the frontier of research on condensed matter physics over the past decade. Unique properties originating from the m
Quantum Monte Carlo (QMC) methods are some of the most accurate methods for simulating correlated electronic systems. We investigate the compatibility, strengths and weaknesses of two such methods, namely, diffusion Monte Carlo (DMC) and auxiliary-fi