ﻻ يوجد ملخص باللغة العربية
We analyze the interference between tunneling paths that occurs for a spin system with both fourth-order and second-order transverse anisotropy. Using an instanton approach, we find that as the strength of the second-order transverse anisotropy is increased, the tunnel splitting is modulated, with zeros occurring periodically. This effect results from the interference of four tunneling paths connecting easy-axis spin orientations and occurs in the absence of any magnetic field.
Magnetization measurements of a molecular clusters Mn12 with a spin ground state of S = 10 show resonance tunneling at avoided energy level crossings. The observed oscillations of the tunnel probability as a function of the magnetic field applied alo
We demonstrate a mechanism for magnetoresistance oscillations in insulating states of two-dimensional (2D) materials arising from the interaction of the 2D layer and proximal graphite gates. We study a series of devices based on different two-dimensi
Quantum tunneling of the magnetization is a major obstacle to the use of single-molecule magnets (SMMs) as basic constituents of next-generation storage devices. In this context, phonons are often only considered (perturbatively) as disturbances that
Magnetism in recently discovered van der Waals materials has opened new avenues in the study of fundamental spin interactions in truly two-dimensions. A paramount question is what effect higher-order interactions beyond bilinear Heisenberg exchange h
In this work we study theoretically the coupling of single molecule magnets (SMMs) to a variety of quantum circuits, including microwave resonators with and without constrictions and flux qubits. The main results of this study is that it is possible