ﻻ يوجد ملخص باللغة العربية
Accurate simulations of isotropic permanent magnets require to take the magnetization process into account and consider the anisotropic, nonlinear, and hysteretic material behaviour near the saturation configuration. An efficient method for the solution of the magnetostatic Maxwell equations including the description of isotropic permanent magnets is presented. The algorithm can easily be implemented on top of existing finite element methods and does not require a full characterization of the hysteresis of the magnetic material. Strayfield measurements of an isotropic permanent magnet and simulation results are in good agreement and highlight the importance of a proper description of the isotropic material.
It is shown that the magnetic-field coils of a stellarator can, at least in principle, be substantially simplified by the use of permanent magnets. Such magnets cannot create toroidal magnetic flux but they can be used to shape the plasma and thus to
This paper presents an extension of the hybrid scheme proposed by Wang et al. (J. Comput. Phys. 229 (2010) 169-180) for numerical simulation of compressible isotropic turbulence to flows with higher turbulent Mach numbers. The scheme still utilizes a
An unconventional magnet may be mapped onto a simple ferromagnet by the existence of a high-symmetry point. Knowledge of conventional ferromagnetic systems may then be carried over to provide insight into more complex orders. Here we demonstrate how
In this work we investigate the potential of tetragonal L1$_0$ ordered FeNi as candidate phase for rare earth free permanent magnets taking into account anisotropy values from recently synthesized, partially ordered FeNi thin films. In particular, we
Numerical simulation for comminution processes inside the vial of ball mills are performed using Monte Carlo method. The internal dynamics is represented by recently developed model based on hamiltonian involving the impact and surrounding electromag