ﻻ يوجد ملخص باللغة العربية
An alternative to current mainstream preprocessing methods is proposed: Value Selection (VS). Unlike the existing methods such as feature selection that removes features and instance selection that eliminates instances, value selection eliminates the values (with respect to each feature) in the dataset with two purposes: reducing the model size and preserving its accuracy. Two probabilistic methods based on information theorys metric are proposed: PVS and P + VS. Extensive experiments on the benchmark datasets with various sizes are elaborated. Those results are compared with the existing preprocessing methods such as feature selection, feature transformation, and instance selection methods. Experiment results show that value selection can achieve the balance between accuracy and model size reduction.
Group-based sparsity models are proven instrumental in linear regression problems for recovering signals from much fewer measurements than standard compressive sensing. The main promise of these models is the recovery of interpretable signals through
The curse of dimensionality is a widely known issue in reinforcement learning (RL). In the tabular setting where the state space $mathcal{S}$ and the action space $mathcal{A}$ are both finite, to obtain a nearly optimal policy with sampling access to
Todays intelligent applications can achieve high performance accuracy using machine learning (ML) techniques, such as deep neural networks (DNNs). Traditionally, in a remote DNN inference problem, an edge device transmits raw data to a remote node th
Cellular vehicle-to-everything (V2X) communication is expected to herald the age of autonomous vehicles in the coming years. With the integration of blockchain in such networks, information of all granularity levels, from complete blocks to individua
Pairwise alignment of DNA sequencing data is a ubiquitous task in bioinformatics and typically represents a heavy computational burden. State-of-the-art approaches to speed up this task use hashing to identify short segments (k-mers) that are shared