ﻻ يوجد ملخص باللغة العربية
Group-based sparsity models are proven instrumental in linear regression problems for recovering signals from much fewer measurements than standard compressive sensing. The main promise of these models is the recovery of interpretable signals through the identification of their constituent groups. In this paper, we establish a combinatorial framework for group-model selection problems and highlight the underlying tractability issues. In particular, we show that the group-model selection problem is equivalent to the well-known NP-hard weighted maximum coverage problem (WMC). Leveraging a graph-based understanding of group models, we describe group structures which enable correct model selection in polynomial time via dynamic programming. Furthermore, group structures that lead to totally unimodular constraints have tractable discrete as well as convex relaxations. We also present a generalization of the group-model that allows for within group sparsity, which can be used to model hierarchical sparsity. Finally, we study the Pareto frontier of group-sparse approximations for two tractable models, among which the tree sparsity model, and illustrate selection and computation trade-offs between our framework and the existing convex relaxations.
An alternative to current mainstream preprocessing methods is proposed: Value Selection (VS). Unlike the existing methods such as feature selection that removes features and instance selection that eliminates instances, value selection eliminates the
Feature selection, in the context of machine learning, is the process of separating the highly predictive feature from those that might be irrelevant or redundant. Information theory has been recognized as a useful concept for this task, as the predi
We study the hardness of Approximate Query Processing (AQP) of various types of queries involving joins over multiple tables of possibly different sizes. In the case where the query result is a single value (e.g., COUNT, SUM, and COUNT(DISTINCT)), we
Radio-frequency fingerprints~(RFFs) are promising solutions for realizing low-cost physical layer authentication. Machine learning-based methods have been proposed for RFF extraction and discrimination. However, most existing methods are designed for
Todays intelligent applications can achieve high performance accuracy using machine learning (ML) techniques, such as deep neural networks (DNNs). Traditionally, in a remote DNN inference problem, an edge device transmits raw data to a remote node th