ترغب بنشر مسار تعليمي؟ اضغط هنا

Online Learning of Facility Locations

215   0   0.0 ( 0 )
 نشر من قبل Stephen Pasteris
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we provide a rigorous theoretical investigation of an online learning version of the Facility Location problem which is motivated by emerging problems in real-world applications. In our formulation, we are given a set of sites and an online sequence of user requests. At each trial, the learner selects a subset of sites and then incurs a cost for each selected site and an additional cost which is the price of the users connection to the nearest site in the selected subset. The problem may be solved by an application of the well-known Hedge algorithm. This would, however, require time and space exponential in the number of the given sites, which motivates our design of a novel quasi-linear time algorithm for this problem, with good theoretical guarantees on its performance.

قيم البحث

اقرأ أيضاً

119 - Yuntao Du , Zhiwen Tan , Qian Chen 2019
Transfer learning has been demonstrated to be successful and essential in diverse applications, which transfers knowledge from related but different source domains to the target domain. Online transfer learning(OTL) is a more challenging problem wher e the target data arrive in an online manner. Most OTL methods combine source classifier and target classifier directly by assigning a weight to each classifier, and adjust the weights constantly. However, these methods pay little attention to reducing the distribution discrepancy between domains. In this paper, we propose a novel online transfer learning method which seeks to find a new feature representation, so that the marginal distribution and conditional distribution discrepancy can be online reduced simultaneously. We focus on online transfer learning with multiple source domains and use the Hedge strategy to leverage knowledge from source domains. We analyze the theoretical properties of the proposed algorithm and provide an upper mistake bound. Comprehensive experiments on two real-world datasets show that our method outperforms state-of-the-art methods by a large margin.
334 - Kulin Shah , Naresh Manwani 2019
Active learning is an important technique to reduce the number of labeled examples in supervised learning. Active learning for binary classification has been well addressed in machine learning. However, active learning of the reject option classifier remains unaddressed. In this paper, we propose novel algorithms for active learning of reject option classifiers. We develop an active learning algorithm using double ramp loss function. We provide mistake bounds for this algorithm. We also propose a new loss function called double sigmoid loss function for reject option and corresponding active learning algorithm. We offer a convergence guarantee for this algorithm. We provide extensive experimental results to show the effectiveness of the proposed algorithms. The proposed algorithms efficiently reduce the number of label examples required.
185 - Chao Gan , Jing Yang , Ruida Zhou 2019
In this paper, we investigate the impact of diverse user preference on learning under the stochastic multi-armed bandit (MAB) framework. We aim to show that when the user preferences are sufficiently diverse and each arm can be optimal for certain us ers, the O(log T) regret incurred by exploring the sub-optimal arms under the standard stochastic MAB setting can be reduced to a constant. Our intuition is that to achieve sub-linear regret, the number of times an optimal arm being pulled should scale linearly in time; when all arms are optimal for certain users and pulled frequently, the estimated arm statistics can quickly converge to their true values, thus reducing the need of exploration dramatically. We cast the problem into a stochastic linear bandits model, where both the users preferences and the state of arms are modeled as {independent and identical distributed (i.i.d)} d-dimensional random vectors. After receiving the user preference vector at the beginning of each time slot, the learner pulls an arm and receives a reward as the linear product of the preference vector and the arm state vector. We also assume that the state of the pulled arm is revealed to the learner once its pulled. We propose a Weighted Upper Confidence Bound (W-UCB) algorithm and show that it can achieve a constant regret when the user preferences are sufficiently diverse. The performance of W-UCB under general setups is also completely characterized and validated with synthetic data.
87 - Guokun Chi , Min Jiang , Xing Gao 2019
Transfer learning techniques have been widely used in the reality that it is difficult to obtain sufficient labeled data in the target domain, but a large amount of auxiliary data can be obtained in the relevant source domain. But most of the existin g methods are based on offline data. In practical applications, it is often necessary to face online learning problems in which the data samples are achieved sequentially. In this paper, We are committed to applying the ensemble approach to solving the problem of online transfer learning so that it can be used in anytime setting. More specifically, we propose a novel online transfer learning framework, which applies the idea of online bagging methods to anytime transfer learning problems, and constructs strong classifiers through online iterations of the usefulness of multiple weak classifiers. Further, our algorithm also provides two extension schemes to reduce the impact of negative transfer. Experiments on three real data sets show that the effectiveness of our proposed algorithms.
107 - Guy Uziel 2019
Deep learning models are considered to be state-of-the-art in many offline machine learning tasks. However, many of the techniques developed are not suitable for online learning tasks. The problem of using deep learning models with sequential data be comes even harder when several loss functions need to be considered simultaneously, as in many real-world applications. In this paper, we, therefore, propose a novel online deep learning training procedure which can be used regardless of the neural networks architecture, aiming to deal with the multiple objectives case. We demonstrate and show the effectiveness of our algorithm on the Neyman-Pearson classification problem on several benchmark datasets.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا