ﻻ يوجد ملخص باللغة العربية
In this paper, we investigate the impact of diverse user preference on learning under the stochastic multi-armed bandit (MAB) framework. We aim to show that when the user preferences are sufficiently diverse and each arm can be optimal for certain users, the O(log T) regret incurred by exploring the sub-optimal arms under the standard stochastic MAB setting can be reduced to a constant. Our intuition is that to achieve sub-linear regret, the number of times an optimal arm being pulled should scale linearly in time; when all arms are optimal for certain users and pulled frequently, the estimated arm statistics can quickly converge to their true values, thus reducing the need of exploration dramatically. We cast the problem into a stochastic linear bandits model, where both the users preferences and the state of arms are modeled as {independent and identical distributed (i.i.d)} d-dimensional random vectors. After receiving the user preference vector at the beginning of each time slot, the learner pulls an arm and receives a reward as the linear product of the preference vector and the arm state vector. We also assume that the state of the pulled arm is revealed to the learner once its pulled. We propose a Weighted Upper Confidence Bound (W-UCB) algorithm and show that it can achieve a constant regret when the user preferences are sufficiently diverse. The performance of W-UCB under general setups is also completely characterized and validated with synthetic data.
In this paper, we investigate a new multi-armed bandit (MAB) online learning model that considers real-world phenomena in many recommender systems: (i) the learning agent cannot pull the arms by itself and thus has to offer rewards to users to incent
Transfer learning has been demonstrated to be successful and essential in diverse applications, which transfers knowledge from related but different source domains to the target domain. Online transfer learning(OTL) is a more challenging problem wher
Deep learning models are considered to be state-of-the-art in many offline machine learning tasks. However, many of the techniques developed are not suitable for online learning tasks. The problem of using deep learning models with sequential data be
This paper deals with bandit online learning problems involving feedback of unknown delay that can emerge in multi-armed bandit (MAB) and bandit convex optimization (BCO) settings. MAB and BCO require only values of the objective function involved th
We aim to design adaptive online learning algorithms that take advantage of any special structure that might be present in the learning task at hand, with as little manual tuning by the user as possible. A fundamental obstacle that comes up in the de