ترغب بنشر مسار تعليمي؟ اضغط هنا

The miniJPAS survey: a preview of the Universe in 56 colours

109   0   0.0 ( 0 )
 نشر من قبل Silvia Bonoli
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Javalambre-Physics of the Accelerating Universe Astrophysical Survey (J-PAS) will soon start to scan thousands of square degrees of the northern extragalactic sky with a unique set of $56$ optical filters from a dedicated $2.55$m telescope, JST, at the Javalambre Astrophysical Observatory. Before the arrival of the final instrument (a 1.2 Gpixels, 4.2deg$^2$ field-of-view camera), the JST was equipped with an interim camera (JPAS-Pathfinder), composed of one CCD with a 0.3deg$^2$ field-of-view and resolution of 0.23 arcsec pixel$^{-1}$. To demonstrate the scientific potential of J-PAS, with the JPAS-Pathfinder camera we carried out a survey on the AEGIS field (along the Extended Groth Strip), dubbed miniJPAS. We observed a total of $sim 1$ deg$^2$, with the $56$ J-PAS filters, which include $54$ narrow band (NB, $rm{FWHM} sim 145$Angstrom) and two broader filters extending to the UV and the near-infrared, complemented by the $u,g,r,i$ SDSS broad band (BB) filters. In this paper we present the miniJPAS data set, the details of the catalogues and data access, and illustrate the scientific potential of our multi-band data. The data surpass the target depths originally planned for J-PAS, reaching $rm{mag}_{rm {AB}}$ between $sim 22$ and $23.5$ for the NB filters and up to $24$ for the BB filters ($5sigma$ in a $3$~arcsec aperture). The miniJPAS primary catalogue contains more than $64,000$ sources extracted in the $r$ detection band with forced photometry in all other bands. We estimate the catalogue to be complete up to $r=23.6$ for point-like sources and up to $r=22.7$ for extended sources. Photometric redshifts reach subpercent precision for all sources up to $r=22.5$, and a precision of $sim 0.3$% for about half of the sample. (Abridged)



قيم البحث

اقرأ أيضاً

MiniJPAS is a ~1 deg^2 imaging survey of the AEGIS field in 60 bands, performed to demonstrate the scientific potential of the upcoming JPAS survey. Full coverage of the 3800-9100 AA range with 54 narrow and 6 broad optical filters allow for extremel y accurate photo-z, which applied over 1000s of deg^2 will enable new applications of the photo-z technique such as measurement of baryonic acoustic oscillations. In this paper we describe the method used to obtain the photo-z included in the publicly available miniJPAS catalogue, and characterise the photo-z performance. We build 100 AA resolution photo-spectra from the PSF-corrected forced-aperture photometry. Systematic offsets in the photometry are corrected by applying magnitude shifts obtained through iterative fitting with stellar population synthesis models. We compute photo-z with a customised version of LePhare, using a set of templates optimised for the J-PAS filter-set. We analyse the accuracy of miniJPAS photo-z and their dependence on multiple quantities using a subsample of 5,266 galaxies with spectroscopic redshifts from SDSS and DEEP, that we find to be representative of the whole r<23 miniJPAS sample. Formal uncertainties for the photo-z that are calculated with the deltachi^2 method underestimate the actual redshift errors. The odds parameter has the stronger correlation with |Dz|, and accurately reproduces the probability of a redshift outlier (|Dz|>0.03) irrespective of the magnitude, redshift, or spectral type of the sources. We show that the two main summary statistics characterising the photo-z accuracy for a population of galaxies (snmad and eta) can be predicted by the distribution of odds in such population, and use this to estimate them for the whole miniJPAS sample. At r<23 there are 17,500 galaxies/deg^2 with valid photo-z estimates, of which 4,200 are expected to have |Dz|<0.003 (abridged).
365 - Kaustuv Basu 2019
This Science White Paper, prepared in response to the ESA Voyage 2050 call for long-term mission planning, aims to describe the various science possibilities that can be realized with an L-class space observatory that is dedicated to the study of the interactions of cosmic microwave background (CMB) photons with the cosmic web. Our aim is specifically to use the CMB as a backlight -- and survey the gas, total mass, and stellar content of the entire observable Universe by means of analyzing the spatial and spectral distortions imprinted on it. These distortions result from two major processes that impact on CMB photons: scattering by electrons (Sunyaev-Zeldovich effect in diverse forms, Rayleigh scattering, resonant scattering) and deflection by gravitational potential (lensing effect). Even though the list of topics collected in this White Paper is not exhaustive, it helps to illustrate the exceptional diversity of major scientific questions that can be addressed by a space mission that will reach an angular resolution of 1.5 arcmin (goal 1 arcmin), have an average sensitivity better than 1 uK-arcmin, and span the microwave frequency range from roughly 50 GHz to 1 THz. The current paper also highlights the synergy of our BACKLIGHT mission concept with several upcoming and proposed ground-based CMB experiments.
[Abridged] Within the hierarchical framework for galaxy formation, minor merging and tidal interactions are expected to shape all large galaxies to the present day. As a consequence, most seemingly normal disk galaxies should be surrounded by spatial ly extended stellar tidal features of low surface brightness. As part of a pilot survey for such interaction signatures, we have carried out ultra deep, wide field imaging of 8 isolated spiral galaxies in the Local Volume, with data taken at small (D=0.1-0.5m) robotic telescopes that provide exquisite surface brightness sensitivity (mu_V)~28.5$ mag/arcsec^2). This initial observational effort has led to the discovery of six previously undetected extensive (to ~30 kpc) stellar structures in the halos surrounding these galaxies, likely debris from tidally disrupted satellites. In addition, we confirm and clarify several enormous stellar over-densities previously reported in the literature, but never before interpreted as tidal streams. Even this pilot sample of galaxies exhibits strikingly diverse morphological characteristics of these extended stellar features: great circle-like features that resemble the Sagittarius stream surrounding the Milky Way, remote shells and giant clouds of presumed tidal debris far beyond the main stelar body, as well as jet-like features emerging from galactic disks. A qualitative comparison with available simulations set in a Lambda-Cold Dark Matter cosmology shows that the extraordinary variety of stellar morphologies detected in this pilot survey matches that seen in those simulations. The common existence of these tidal features around normal disk galaxies and the morphological match to the simulations constitutes new evidence that these theoretical models also apply to a large number of other Milky Way-mass disk galaxies in the Local Volume.
The Kilo-Degree Survey (KiDS) is an optical wide-field imaging survey carried out with the VLT Survey Telescope and the OmegaCAM camera. KiDS will image 1500 square degrees in four filters (ugri), and together with its near-infrared counterpart VIKIN G will produce deep photometry in nine bands. Designed for weak lensing shape and photometric redshift measurements, the core science driver of the survey is mapping the large-scale matter distribution in the Universe back to a redshift of ~0.5. Secondary science cases are manifold, covering topics such as galaxy evolution, Milky Way structure, and the detection of high-redshift clusters and quasars. KiDS is an ESO Public Survey and dedicated to serving the astronomical community with high-quality data products derived from the survey data, as well as with calibration data. Public data releases will be made on a yearly basis, the first two of which are presented here. For a total of 148 survey tiles (~160 sq.deg.) astrometrically and photometrically calibrated, coadded ugri images have been released, accompanied by weight maps, masks, source lists, and a multi-band source catalog. A dedicated pipeline and data management system based on the Astro-WISE software system, combined with newly developed masking and source classification software, is used for the data production of the data products described here. The achieved data quality and early science projects based on the data products in the first two data releases are reviewed in order to validate the survey data. Early scientific results include the detection of nine high-z QSOs, fifteen candidate strong gravitational lenses, high-quality photometric redshifts and galaxy structural parameters for hundreds of thousands of galaxies. (Abridged)
More than three quarters of the baryonic content of the Universe resides in a highly diffuse state that is difficult to observe, with only a small fraction directly observed in galaxies and galaxy clusters. Censuses of the nearby Universe have used a bsorption line spectroscopy to observe these invisible baryons, but these measurements rely on large and uncertain corrections and are insensitive to the majority of the volume, and likely mass. Specifically, quasar spectroscopy is sensitive either to only the very trace amounts of Hydrogen that exists in the atomic state, or highly ionized and enriched gas in denser regions near galaxies. Sunyaev-Zeldovich analyses provide evidence of some of the gas in filamentary structures and studies of X-ray emission are most sensitive to gas near galaxy clusters. Here we report the direct measurement of the baryon content of the Universe using the dispersion of a sample of localized fast radio bursts (FRBs), thus utilizing an effect that measures the electron column density along each sight line and accounts for every ionised baryon. We augment the sample of published arcsecond-localized FRBs with a further four new localizations to host galaxies which have measured redshifts of 0.291, 0.118, 0.378 and 0.522, completing a sample sufficiently large to account for dispersion variations along the line of sight and in the host galaxy environment to derive a cosmic baryon density of $Omega_{b} = 0.051_{-0.025}^{+0.021} , h_{70}^{-1}$ (95% confidence). This independent measurement is consistent with Cosmic Microwave Background and Big Bang Nucleosynthesis values.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا