ﻻ يوجد ملخص باللغة العربية
[Abridged] Within the hierarchical framework for galaxy formation, minor merging and tidal interactions are expected to shape all large galaxies to the present day. As a consequence, most seemingly normal disk galaxies should be surrounded by spatially extended stellar tidal features of low surface brightness. As part of a pilot survey for such interaction signatures, we have carried out ultra deep, wide field imaging of 8 isolated spiral galaxies in the Local Volume, with data taken at small (D=0.1-0.5m) robotic telescopes that provide exquisite surface brightness sensitivity (mu_V)~28.5$ mag/arcsec^2). This initial observational effort has led to the discovery of six previously undetected extensive (to ~30 kpc) stellar structures in the halos surrounding these galaxies, likely debris from tidally disrupted satellites. In addition, we confirm and clarify several enormous stellar over-densities previously reported in the literature, but never before interpreted as tidal streams. Even this pilot sample of galaxies exhibits strikingly diverse morphological characteristics of these extended stellar features: great circle-like features that resemble the Sagittarius stream surrounding the Milky Way, remote shells and giant clouds of presumed tidal debris far beyond the main stelar body, as well as jet-like features emerging from galactic disks. A qualitative comparison with available simulations set in a Lambda-Cold Dark Matter cosmology shows that the extraordinary variety of stellar morphologies detected in this pilot survey matches that seen in those simulations. The common existence of these tidal features around normal disk galaxies and the morphological match to the simulations constitutes new evidence that these theoretical models also apply to a large number of other Milky Way-mass disk galaxies in the Local Volume.
Within the hierarchical framework for galaxy formation, merging and tidal interactions are expected to shape large galaxies to this day. While major mergers are quite rare at present, minor mergers and satellite disruptions - which result in stellar
Recent work has suggested that the stellar initial mass function (IMF) is not universal, but rather is correlated with galaxy stellar mass, stellar velocity dispersion, or morphological type. In this paper, we investigate variations of the IMF within
Tidal debris around galaxies can yield important clues on their evolution. We have identified tidal debris in 11 early type galaxies (T leq 0) from a sample of 65 early types drawn from the Spitzer Survey of Stellar Structure in Galaxies (S4G). The t
We have used V- and I- band images from the Hubble Space Telescope (HST) to identify compact stellar clusters within the tidal tails of twelve different interacting galaxies. The seventeen tails within our sample span a physical parameter space of HI
A key prediction of the standard cosmological model -- which relies on the assumption that dark matter is cold, i.e. non-relativistic at the epoch of structure formation -- is the existence of a large number of dark matter substructures on sub-galact