ترغب بنشر مسار تعليمي؟ اضغط هنا

The miniJPAS survey: the photometric redshift catalogue

116   0   0.0 ( 0 )
 نشر من قبل Antonio Hern\\'an-Caballero
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

MiniJPAS is a ~1 deg^2 imaging survey of the AEGIS field in 60 bands, performed to demonstrate the scientific potential of the upcoming JPAS survey. Full coverage of the 3800-9100 AA range with 54 narrow and 6 broad optical filters allow for extremely accurate photo-z, which applied over 1000s of deg^2 will enable new applications of the photo-z technique such as measurement of baryonic acoustic oscillations. In this paper we describe the method used to obtain the photo-z included in the publicly available miniJPAS catalogue, and characterise the photo-z performance. We build 100 AA resolution photo-spectra from the PSF-corrected forced-aperture photometry. Systematic offsets in the photometry are corrected by applying magnitude shifts obtained through iterative fitting with stellar population synthesis models. We compute photo-z with a customised version of LePhare, using a set of templates optimised for the J-PAS filter-set. We analyse the accuracy of miniJPAS photo-z and their dependence on multiple quantities using a subsample of 5,266 galaxies with spectroscopic redshifts from SDSS and DEEP, that we find to be representative of the whole r<23 miniJPAS sample. Formal uncertainties for the photo-z that are calculated with the deltachi^2 method underestimate the actual redshift errors. The odds parameter has the stronger correlation with |Dz|, and accurately reproduces the probability of a redshift outlier (|Dz|>0.03) irrespective of the magnitude, redshift, or spectral type of the sources. We show that the two main summary statistics characterising the photo-z accuracy for a population of galaxies (snmad and eta) can be predicted by the distribution of odds in such population, and use this to estimate them for the whole miniJPAS sample. At r<23 there are 17,500 galaxies/deg^2 with valid photo-z estimates, of which 4,200 are expected to have |Dz|<0.003 (abridged).

قيم البحث

اقرأ أيضاً

We present a robust method to estimate the redshift of galaxies using Pan-STARRS1 photometric data. Our method is an adaptation of the one proposed by Beck et al. (2016) for the SDSS Data Release 12. It uses a training set of 2313724 galaxies for whi ch the spectroscopic redshift is obtained from SDSS, and magnitudes and colours are obtained from the Pan-STARRS1 Data Release 2 survey. The photometric redshift of a galaxy is then estimated by means of a local linear regression in a 5-dimensional magnitude and colour space. Our method achieves an average bias of $overline{Delta z_{rm norm}}=-2.01 times 10^{-4}$, a standard deviation of $sigma(Delta z_{rm norm})=0.0298$, and an outlier rate of $P_o=4.32%$ when cross-validating on the training set. Even though the relation between each of the Pan-STARRS1 colours and the spectroscopic redshifts is noisier than for SDSS colours, the results obtained by our method are very close to those yielded by SDSS data. The proposed method has the additional advantage of allowing the estimation of photometric redshifts on a larger portion of the sky ($sim 3/4$ vs $sim 1/3$). The training set and the code implementing this method are publicly available at www.testaddress.com.
The Javalambre-Physics of the Accelerating Universe Astrophysical Survey (J-PAS) will soon start to scan thousands of square degrees of the northern extragalactic sky with a unique set of $56$ optical filters from a dedicated $2.55$m telescope, JST, at the Javalambre Astrophysical Observatory. Before the arrival of the final instrument (a 1.2 Gpixels, 4.2deg$^2$ field-of-view camera), the JST was equipped with an interim camera (JPAS-Pathfinder), composed of one CCD with a 0.3deg$^2$ field-of-view and resolution of 0.23 arcsec pixel$^{-1}$. To demonstrate the scientific potential of J-PAS, with the JPAS-Pathfinder camera we carried out a survey on the AEGIS field (along the Extended Groth Strip), dubbed miniJPAS. We observed a total of $sim 1$ deg$^2$, with the $56$ J-PAS filters, which include $54$ narrow band (NB, $rm{FWHM} sim 145$Angstrom) and two broader filters extending to the UV and the near-infrared, complemented by the $u,g,r,i$ SDSS broad band (BB) filters. In this paper we present the miniJPAS data set, the details of the catalogues and data access, and illustrate the scientific potential of our multi-band data. The data surpass the target depths originally planned for J-PAS, reaching $rm{mag}_{rm {AB}}$ between $sim 22$ and $23.5$ for the NB filters and up to $24$ for the BB filters ($5sigma$ in a $3$~arcsec aperture). The miniJPAS primary catalogue contains more than $64,000$ sources extracted in the $r$ detection band with forced photometry in all other bands. We estimate the catalogue to be complete up to $r=23.6$ for point-like sources and up to $r=22.7$ for extended sources. Photometric redshifts reach subpercent precision for all sources up to $r=22.5$, and a precision of $sim 0.3$% for about half of the sample. (Abridged)
78 - Evan Jones , J. Singal 2017
We present results of using individual galaxies redshift probability information derived from a photometric redshift (photo-z) algorithm, SPIDERz, to identify potential catastrophic outliers in photometric redshift determinations. By using two test d ata sets comprised of COSMOS multi-band photometry spanning a wide redshift range (0<z<4) matched with reliable spectroscopic or other redshift determinations we explore the efficacy of a novel method to flag potential catastrophic outliers in an analysis which relies on accurate photometric redshifts. SPIDERz is a custom support vector machine classification algorithm for photo-z analysis that naturally outputs a distribution of redshift probability information for each galaxy in addition to a discrete most probable photo-z value. By applying an analytic technique with flagging criteria to identify the presence of probability distribution features characteristic of catastrophic outlier photo-z estimates, such as multiple redshift probability peaks separated by substantial redshift distances, we can flag potential catastrophic outliers in photo-z determinations. We find that our proposed method can correctly flag large fractions (>50%) of the catastrophic outlier galaxies, while only flagging a small fraction (<5%) of the total non-outlier galaxies, depending on parameter choices. The fraction of non-outlier galaxies flagged varies significantly with redshift and magnitude, however. We examine the performance of this strategy in photo-z determinations using a range of flagging parameter values. These results could potentially be useful for utilization of photometric redshifts in future large scale surveys where catastrophic outliers are particularly detrimental to the science goals.
The PAU Survey (PAUS) is an innovative photometric survey with 40 narrow bands at the William Herschel Telescope (WHT). The narrow bands are spaced at 100AA intervals covering the range 4500AA to 8500AA and, in combination with standard broad bands, enable excellent redshift precision. This paper describes the technique, galaxy templates and additional photometric calibration used to determine early photometric redshifts from PAUS. Using BCNz2, a new photometric redshift code developed for this purpose, we characterise the photometric redshift performance using PAUS data on the COSMOS field. Comparison to secure spectra from zCOSMOS DR3 shows that PAUS achieves $sigma_{68} /(1+z) = 0.0037$ to $i_{mathrm{AB}} < 22.5$ when selecting the best 50% of the sources based on a photometric redshift quality cut. Furthermore, a higher photo-z precision ($sigma_{68}/(1+z) sim 0.001$) is obtained for a bright and high quality selection, which is driven by the identification of emission lines. We conclude that PAUS meets its design goals, opening up a hitherto uncharted regime of deep, wide, and dense galaxy survey with precise redshifts that will provide unique insights into the formation, evolution and clustering of galaxies, as well as their intrinsic alignments.
We present a bright galaxy sample with accurate and precise photometric redshifts (photo-zs), selected using $ugriZYJHK_mathrm{s}$ photometry from the Kilo-Degree Survey (KiDS) Data Release 4 (DR4). The highly pure and complete dataset is flux-limite d at $r<20$ mag, covers $sim1000$ deg$^2$, and contains about 1 million galaxies after artifact masking. We exploit the overlap with Galaxy And Mass Assembly (GAMA) spectroscopy as calibration to determine photo-zs with the supervised machine learning neural network algorithm implemented in the ANNz2 software. The photo-zs have mean error of $|langle delta z rangle| sim 5 times 10^{-4}$ and low scatter (scaled mean absolute deviation of $sim 0.018(1+z)$), both practically independent of the $r$-band magnitude and photo-z at $0.05 < z_mathrm{phot} < 0.5$. Combined with the 9-band photometry, these allow us to estimate robust absolute magnitudes and stellar masses for the full sample. As a demonstration of the usefulness of these data we split the dataset into red and blue galaxies, use them as lenses and measure the weak gravitational lensing signal around them for five stellar mass bins. We fit a halo model to these high-precision measurements to constrain the stellar-mass--halo-mass relations for blue and red galaxies. We find that for high stellar mass ($M_star>5times 10^{11} M_odot$), the red galaxies occupy dark matter halos that are much more massive than those occupied by blue galaxies with the same stellar mass. The data presented here are publicly released via the KiDS webpage at http://kids.strw.leidenuniv.nl/DR4/brightsample.php.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا