ﻻ يوجد ملخص باللغة العربية
The intermediate valence (IV) compound YbAl$_3$ exhibits nonintegral valence (Yb 4$f^{14-n_f}$ (5d6s)$^z$ where z = 2+n$_f$ = 2.75) in a moderately heavy (m* = 20-30me) ground state with a large Kondo temperature (T$_K$ ~ 500-600K). We have measured the magnetic fluctuations and the phonon spectra on single crystals of this material by time-of-flight inelastic neutron scattering (INS) and inelastic x-ray scattering (IXS). We find that at low temperature, the Kondo-scale spin fluctuations have a momentum (Q) dependence similar to that seen recently in the IV compound CePd$_3$ and which can be attributed to particle-hole excitations in a coherent itinerant 4$f$ correlated ground state. The Q-dependence disappears as the temperature is raised towards room temperature and the 4$f$ electron band states become increasingly incoherent. The measured phonons can be described adequately by a calculation based on standard DFT+$U$ density functional theory, without recourse to considering 4$f$ correlations dynamically. A low temperature magnetic peak observed in the neutron scattering at ~ 30meV shows dispersion identical to an optic phonon branch. This 4$f$/phonon resonance disappears for T > 150K. The phonons appear to remain unaffected by the resonance. We discuss several possibilities for the origin of this unusual excitation, including the idea that it arises from the large amplitude beating of the light Al atoms against the heavy Yb atoms, resulting in a dynamic 4$f$/3$p$ hybridization.
The use of current-generated spin-orbit torques[1] to drive magnetization dynamics is under investigation to enable a new generation of non-volatile, low-power magnetic memory. Previous research has focused on spin-orbit torques generated by heavy me
We use hard x-ray photoemission spectroscopy (HAXPES) to investigate the electronic structure of YbAl2, for which the Yb valence has not been consistently reported to date. The bulk sensitivity and the analytical simplicity provided by the Yb 3d core
Polar phonons of HgCr2S4 and CdCr2S4 are studied by far-infrared spectroscopy as a function of temperature and external magnetic field. Eigenfrequencies, damping constants, effective plasma frequencies and Lyddane-Sachs-Teller relations, and effectiv
We present THz measurements of thin films of mixed-valent YbAl$_3$ and its structural analogue LuAl$_3$. Combined with traditional Fourier transform infrared (FTIR) spectroscopy, the extended Drude formalism is utilized to study the low-frequency tra
The spin transition in LaCoO$_3$ has been investigated within the density-functional theory + dynamical mean-field theory formalism using continuous time quantum Monte Carlo. Calculations on the experimental rhombohedral atomic structure with two Co