ترغب بنشر مسار تعليمي؟ اضغط هنا

Heteroskedastic and Imbalanced Deep Learning with Adaptive Regularization

117   0   0.0 ( 0 )
 نشر من قبل Kaidi Cao
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Real-world large-scale datasets are heteroskedastic and imbalanced -- labels have varying levels of uncertainty and label distributions are long-tailed. Heteroskedasticity and imbalance challenge deep learning algorithms due to the difficulty of distinguishing among mislabeled, ambiguous, and rare examples. Addressing heteroskedasticity and imbalance simultaneously is under-explored. We propose a data-dependent regularization technique for heteroskedastic datasets that regularizes different regions of the input space differently. Inspired by the theoretical derivation of the optimal regularization strength in a one-dimensional nonparametric classification setting, our approach adaptively regularizes the data points in higher-uncertainty, lower-density regions more heavily. We test our method on several benchmark tasks, including a real-world heteroskedastic and imbalanced dataset, WebVision. Our experiments corroborate our theory and demonstrate a significant improvement over other methods in noise-robust deep learning.

قيم البحث

اقرأ أيضاً

The dynamic ensemble selection of classifiers is an effective approach for processing label-imbalanced data classifications. However, such a technique is prone to overfitting, owing to the lack of regularization methods and the dependence of the afor ementioned technique on local geometry. In this study, focusing on binary imbalanced data classification, a novel dynamic ensemble method, namely adaptive ensemble of classifiers with regularization (AER), is proposed, to overcome the stated limitations. The method solves the overfitting problem through implicit regularization. Specifically, it leverages the properties of stochastic gradient descent to obtain the solution with the minimum norm, thereby achieving regularization; furthermore, it interpolates the ensemble weights by exploiting the global geometry of data to further prevent overfitting. According to our theoretical proofs, the seemingly complicated AER paradigm, in addition to its regularization capabilities, can actually reduce the asymptotic time and memory complexities of several other algorithms. We evaluate the proposed AER method on seven benchmark imbalanced datasets from the UCI machine learning repository and one artificially generated GMM-based dataset with five variations. The results show that the proposed algorithm outperforms the major existing algorithms based on multiple metrics in most cases, and two hypothesis tests (McNemars and Wilcoxon tests) verify the statistical significance further. In addition, the proposed method has other preferred properties such as special advantages in dealing with highly imbalanced data, and it pioneers the research on the regularization for dynamic ensemble methods.
Multi-task learning (MTL) is a common paradigm that seeks to improve the generalization performance of task learning by training related tasks simultaneously. However, it is still a challenging problem to search the flexible and accurate architecture that can be shared among multiple tasks. In this paper, we propose a novel deep learning model called Task Adaptive Activation Network (TAAN) that can automatically learn the optimal network architecture for MTL. The main principle of TAAN is to derive flexible activation functions for different tasks from the data with other parameters of the network fully shared. We further propose two functional regularization methods that improve the MTL performance of TAAN. The improved performance of both TAAN and the regularization methods is demonstrated by comprehensive experiments.
101 - Yangdi Lu , Yang Bo , Wenbo He 2021
Recent studies on the memorization effects of deep neural networks on noisy labels show that the networks first fit the correctly-labeled training samples before memorizing the mislabeled samples. Motivated by this early-learning phenomenon, we propo se a novel method to prevent memorization of the mislabeled samples. Unlike the existing approaches which use the model output to identify or ignore the mislabeled samples, we introduce an indicator branch to the original model and enable the model to produce a confidence value for each sample. The confidence values are incorporated in our loss function which is learned to assign large confidence values to correctly-labeled samples and small confidence values to mislabeled samples. We also propose an auxiliary regularization term to further improve the robustness of the model. To improve the performance, we gradually correct the noisy labels with a well-designed target estimation strategy. We provide the theoretical analysis and conduct the experiments on synthetic and real-world datasets, demonstrating that our approach achieves comparable results to the state-of-the-art methods.
83 - Wenfang Lin , Zhenyu Wu , Yang Ji 2018
Data-driven fault diagnostics and prognostics suffers from class-imbalance problem in industrial systems and it raises challenges to common machine learning algorithms as it becomes difficult to learn the features of the minority class samples. Synth etic oversampling methods are commonly used to tackle these problems by generating the minority class samples to balance the distributions between majority and minority classes. However, many of oversampling methods are inappropriate that they cannot generate effective and useful minority class samples according to different distributions of data, which further complicate the process of learning samples. Thus, this paper proposes a novel adaptive oversampling technique: EM-based Weighted Minority Oversampling TEchnique (EWMOTE) for industrial fault diagnostics and prognostics. The methods comprises a weighted minority sampling strategy to identify hard-to-learn informative minority fault samples and Expectation Maximization (EM) based imputation algorithm to generate fault samples. To validate the performance of the proposed methods, experiments are conducted in two real datasets. The results show that the method could achieve better performance on not only binary class, but multi-class imbalance learning task in different imbalance ratios than other oversampling-based baseline models.
Recently, a variety of regularization techniques have been widely applied in deep neural networks, such as dropout, batch normalization, data augmentation, and so on. These methods mainly focus on the regularization of weight parameters to prevent ov erfitting effectively. In addition, label regularization techniques such as label smoothing and label disturbance have also been proposed with the motivation of adding a stochastic perturbation to labels. In this paper, we propose a novel adaptive label regularization method, which enables the neural network to learn from the erroneous experience and update the optimal label representation online. On the other hand, compared with knowledge distillation, which learns the correlation of categories using teacher network, our proposed method requires only a minuscule increase in parameters without cumbersome teacher network. Furthermore, we evaluate our method on CIFAR-10/CIFAR-100/ImageNet datasets for image recognition tasks and AGNews/Yahoo/Yelp-Full datasets for text classification tasks. The empirical results show significant improvement under all experimental settings.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا