ﻻ يوجد ملخص باللغة العربية
The shortest-path, commute time, and diffusion distances on undirected graphs have been widely employed in applications such as dimensionality reduction, link prediction, and trip planning. Increasingly, there is interest in using asymmetric structure of data derived from Markov chains and directed graphs, but few metrics are specifically adapted to this task. We introduce a metric on the state space of any ergodic, finite-state, time-homogeneous Markov chain and, in particular, on any Markov chain derived from a directed graph. Our construction is based on hitting probabilities, with nearness in the metric space related to the transfer of random walkers from one node to another at stationarity. Notably, our metric is insensitive to shortest and average walk distances, thus giving new information compared to existing metrics. We use possible degeneracies in the metric to develop an interesting structural theory of directed graphs and explore a related quotienting procedure. Our metric can be computed in $O(n^3)$ time, where $n$ is the number of states, and in examples we scale up to $n=10,000$ nodes and $approx 38M$ edges on a desktop computer. In several examples, we explore the nature of the metric, compare it to alternative methods, and demonstrate its utility for weak recovery of community structure in dense graphs, visualization, structure recovering, dynamics exploration, and multiscale cluster detection.
This paper establishes a Markov chain model as a unified framework for understanding information consumption processes in complex networks, with clear implications to the Internet and big-data technologies. In particular, the proposed model is the fi
In this paper, we address the approximate minimization problem of Markov Chains (MCs) from a behavioral metric-based perspective. Specifically, given a finite MC and a positive integer k, we are looking for an MC with at most k states having minimal
Let 0<alpha<1/2. We show that the mixing time of a continuous-time reversible Markov chain on a finite state space is about as large as the largest expected hitting time of a subset of stationary measure at least alpha of the state space. Suitably mo
In the present paper, we construct quantum Markov chains (QMC) over the Comb graphs. As an application of this construction, it is proved the existence of the disordered phase for the Ising type models (within QMC scheme) over the Comb graphs. Moreov
In this paper we introduce a notion of spectral approximation for directed graphs. While there are many potential ways one might define approximation for directed graphs, most of them are too strong to allow sparse approximations in general. In contr