ﻻ يوجد ملخص باللغة العربية
In this paper, we address the approximate minimization problem of Markov Chains (MCs) from a behavioral metric-based perspective. Specifically, given a finite MC and a positive integer k, we are looking for an MC with at most k states having minimal distance to the original. The metric considered in this work is the bisimilarity distance of Desharnais et al.. For this metric we show that (1) optimal approximations always exist; (2) the problem has a bilinear program characterization; and (3) prove that its threshold problem is in PSPACE and NP-hard. In addition to the bilinear program solution, we present an approach inspired by expectation maximization techniques for computing suboptimal solutions to the problem. Experiments suggest that our method gives a practical approach that outperforms the bilinear program implementation run on state-of-the-art bilinear solvers.
We address the approximate minimization problem for weighted finite automata (WFAs) with weights in $mathbb{R}$, over a one-letter alphabet: to compute the best possible approximation of a WFA given a bound on the number of states. This work is groun
The shortest-path, commute time, and diffusion distances on undirected graphs have been widely employed in applications such as dimensionality reduction, link prediction, and trip planning. Increasingly, there is interest in using asymmetric structur
We prove that any one-dimensional (1D) quantum state with small quantum conditional mutual information in all certain tripartite splits of the system, which we call a quantum approximate Markov chain, can be well-approximated by a Gibbs state of a sh
We study runtime monitoring of $omega$-regular properties. We consider a simple setting in which a run of an unknown finite-state Markov chain $mathcal M$ is monitored against a fixed but arbitrary $omega$-regular specification $varphi$. The purpose
This work introduces a new abstraction technique for reducing the state space of large, discrete-time labelled Markov chains. The abstraction leverages the semantics of interval Markov decision processes and the existing notion of approximate probabi