ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin and flavor projection operators in the $SU(2N_f)$ spin-flavor group

74   0   0.0 ( 0 )
 نشر من قبل Ruben Flores
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The quadratic Casimir operator of the special unitary $SU(N)$ group is used to construct projection operators, which can decompose any of its reducible finite-dimensional representation spaces contained in the tensor product of two and three adjoint spaces into irreducible components. Although the method is general enough, it is specialized to the $SU(2N_f) to SU(2)otimes SU(N_f)$ spin-flavor symmetry group, which emerges in the baryon sector of QCD in the large-$N_c$ limit, where $N_f$ and $N_c$ are the numbers of light quark flavors and color charges, respectively. The approach leads to the construction of spin and flavor projection operators that can be implemented in the analysis of the $1/N_c$ operator expansion. The use of projection operators allows one to successfully project out the desired components of a given operator and subtract off those that are not needed. Some explicit examples in $SU(2)$ and $SU(3)$ are detailed.



قيم البحث

اقرأ أيضاً

Consistent SU(6) and SU(8) spin-flavor extensions of the SU(3) flavor Weinberg-Tomozawa (WT) meson-baryon chiral Lagrangian are constructed, which incorporate vector meson degrees of freedom. In the charmless sector, the on-shell approximation to the Bethe-Salpeter (BS) approach successfully reproduces previous SU(3) WT results for the lowest-lying s--wave negative parity baryon resonances. It also provides some information on the dynamics of heavier ones and of the lightest d-wave negative parity resonances, as e.g. the Lambda(1520). For charmed baryons the scheme is consistent with heavy quark symmetry, and our preliminary results in the strangeness-less charm C=+1 sector describe the main features of the three-star J^P=1/2^- Lambda_c(2595) and J^P=3/2^- Lambda_c(2625) resonances. We also find a second broad J^P=1/2^- state close to the Lambda_c(2595)
We argue that Delta L=2 neutrino spin flavor precession, induced by the primordial magnetic fields, could have a significant impact on the leptogenesis process that accounts for the baryon asymmetry of the universe. Although the extra galactic magnet ic fields is extremely weak at present time (about 10^{-9} Gauss), the primordial magnetic filed at the electroweak scale could be quite strong (of order 10^{17} Gauss). Therefore, at this scale, the effects of the spin flavor precession are not negligible. We show that the lepton asymmetry may be reduced by 50% due to the spin flavor precession. In addition, the leptogenesis will have different feature from the standard scenario of leptogenesis, where the lepton asymmetry continues to oscillate even after the electroweak phase transition.
In $XQM$, a quark can emit Goldstone bosons. The flavor symmetry breaking in the Goldstone boson emission process is used to intepret the nucleon flavor-spin structure. In this paper, we study the inner structure of constituent quarks implied in $XQM $ caused by the Goldstone boson emission process in nucleon. From a simplified model Hamiltonian derived from $XQM$, the intrinsic wave functions of constituent quarks are determined. Then the obtained transition probabilities of the emission of Goldstone boson from a quark can give a reasonable interpretation to the flavor symmetry breaking in nucleon flavor-spin structure.
After a brief history of two known types of neutrino mixing and oscillations, including neutrino spin and spin-flavour oscillations in the transversal magnetic field, we perform systematic study of a new phenomenon of neutrino spin and spin-flavour o scillations engendered by the transversal matter currents on the bases of the developed quantum treatment of the phenomenon. Possibilities for the resonance amplification of these new types of oscillations by the longitudinal matter currents and longitudinal magnetic fields are analyzed. We also consider modifications of the oscillation probabilities due to possible arbitrary orientation of the magnetic field vector ${bf B}$ and the matter velocity ${bf v}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا