ﻻ يوجد ملخص باللغة العربية
Consistent SU(6) and SU(8) spin-flavor extensions of the SU(3) flavor Weinberg-Tomozawa (WT) meson-baryon chiral Lagrangian are constructed, which incorporate vector meson degrees of freedom. In the charmless sector, the on-shell approximation to the Bethe-Salpeter (BS) approach successfully reproduces previous SU(3) WT results for the lowest-lying s--wave negative parity baryon resonances. It also provides some information on the dynamics of heavier ones and of the lightest d-wave negative parity resonances, as e.g. the Lambda(1520). For charmed baryons the scheme is consistent with heavy quark symmetry, and our preliminary results in the strangeness-less charm C=+1 sector describe the main features of the three-star J^P=1/2^- Lambda_c(2595) and J^P=3/2^- Lambda_c(2625) resonances. We also find a second broad J^P=1/2^- state close to the Lambda_c(2595)
We introduce the flavor symmetry ${bf Z}_M times {bf Z}_N times D_4$ into the $SU(6) times SU(2)_R$ string-inspired model. The cyclic group ${bf Z}_M$ and the dihedral group $D_4$ are R symmetries, while ${bf Z}_N$ is a non-R symmetry. By imposing th
The lepton masses and mixings are studied on the basis of string inspired $SU(6)times SU(2)_R$ model with global flavor symmetries. Provided that sizable mixings between lepton doublets $L$ and Higgsino-like fields $H_d$ with even R-parity occur and
Massive neutrino is an evidence of new physics beyond the Standard Model. One of the well motivated new physics scenarios is a model with gauged lepton flavor symmetry. We investigate neutrino properties in the minimal SU$(3)_elltimes$SU$(3)_E$ gauge
We explore a possibility to generate exotic hadrons dynamically in the scattering of hadrons. The s-wave scattering amplitude of an arbitrary hadron with the Nambu-Goldstone boson is constructed so as to satisfy the unitarity condition and the chiral
Using recently derived results for one-loop hadronic splitting functions from a nonlocal implementation of chiral effective theory, we study the contributions from pseudoscalar meson loops to flavor asymmetries in the proton. Constraining the paramet