ﻻ يوجد ملخص باللغة العربية
Phase retrieval (PR), also sometimes referred to as quadratic sensing, is a problem that occurs in numerous signal and image acquisition domains ranging from optics, X-ray crystallography, Fourier ptychography, sub-diffraction imaging, and astronomy. In each of these domains, the physics of the acquisition system dictates that only the magnitude (intensity) of certain linear projections of the signal or image can be measured. Without any assumptions on the unknown signal, accurate recovery necessarily requires an over-complete set of measurements. The only way to reduce the measurements/sample complexity is to place extra assumptions on the unknown signal/image. A simple and practically valid set of assumptions is obtained by exploiting the structure inherently present in many natural signals or sequences of signals. Two commonly used structural assumptions are (i) sparsity of a given signal/image or (ii) a low rank model on the matrix formed by a set, e.g., a time sequence, of signals/images. Both have been explored for solving the PR problem in a sample-efficient fashion. This article describes this work, with a focus on non-convex approaches that come with sample complexity guarantees under simple assumptions. We also briefly describe other different types of structural assumptions that have been used in recent literature.
Efficiently representing real world data in a succinct and parsimonious manner is of central importance in many fields. We present a generalized greedy pursuit framework, allowing us to efficiently solve structured matrix factorization problems, wher
Phase retrieval (PR) is an important component in modern computational imaging systems. Many algorithms have been developed over the past half century. Recent advances in deep learning have opened up a new possibility for robust and fast PR. An emerg
Phase retrieval deals with the estimation of complex-valued signals solely from the magnitudes of linear measurements. While there has been a recent explosion in the development of phase retrieval algorithms, the lack of a common interface has made i
We consider a variant of the phase retrieval problem, where vectors are replaced by unitary matrices, i.e., the unknown signal is a unitary matrix U, and the measurements consist of squared inner products |Tr(C*U)|^2 with unitary matrices C that are
Recent years have seen a flurry of activities in designing provably efficient nonconvex procedures for solving statistical estimation problems. Due to the highly nonconvex nature of the empirical loss, state-of-the-art procedures often require proper