ﻻ يوجد ملخص باللغة العربية
Phase retrieval (PR) is an important component in modern computational imaging systems. Many algorithms have been developed over the past half century. Recent advances in deep learning have opened up a new possibility for robust and fast PR. An emerging technique, called deep unfolding, provides a systematic connection between conventional model-based iterative algorithms and modern data-based deep learning. Unfolded algorithms, powered by data learning, have shown remarkable performance and convergence speed improvement over the original algorithms. Despite their potential, most existing unfolded algorithms are strictly confined to a fixed number of iterations when employing layer-dependent parameters. In this study, we develop a novel framework for deep unfolding to overcome the existing limitations. Even if our framework can be widely applied to general inverse problems, we take PR as an example in the paper. Our development is based on an unfolded generalized expectation consistent signal recovery (GEC-SR) algorithm, wherein damping factors are left for data-driven learning. In particular, we introduce a hypernetwork to generate the damping factors for GEC-SR. Instead of directly learning a set of optimal damping factors, the hypernetwork learns how to generate the optimal damping factors according to the clinical settings, thus ensuring its adaptivity to different scenarios. To make the hypernetwork work adapt to varying layer numbers, we use a recurrent architecture to develop a dynamic hypernetwork, which generates a damping factor that can vary online across layers. We also exploit a self-attention mechanism to enhance the robustness of the hypernetwork. Extensive experiments show that the proposed algorithm outperforms existing ones in convergence speed and accuracy, and still works well under very harsh settings, that many classical PR algorithms unstable or even fail.
In this paper, we propose a generalized expectation consistent signal recovery algorithm to estimate the signal $mathbf{x}$ from the nonlinear measurements of a linear transform output $mathbf{z}=mathbf{A}mathbf{x}$. This estimation problem has been
In phase retrieval we want to recover an unknown signal $boldsymbol xinmathbb C^d$ from $n$ quadratic measurements of the form $y_i = |langle{boldsymbol a}_i,{boldsymbol x}rangle|^2+w_i$ where $boldsymbol a_iin mathbb C^d$ are known sensing vectors a
The reconstruction of sparse signal is an active area of research. Different from a typical i.i.d. assumption, this paper considers a non-independent prior of group structure. For this more practical setup, we propose EM-aided HyGEC, a new algorithm
We consider a variant of the phase retrieval problem, where vectors are replaced by unitary matrices, i.e., the unknown signal is a unitary matrix U, and the measurements consist of squared inner products |Tr(C*U)|^2 with unitary matrices C that are
We study the problem of indoor localization using commodity WiFi channel state information (CSI) measurements. The accuracy of methods developed to address this problem is limited by the overall bandwidth used by the WiFi device as well as various ty